3D printed CoCrMo personalised load-bearing meta-scaffold for critical size tibial reconstruction

Chameekara T. Wanniarachchi, Arun Arjunan*, Ahmad Baroutaji, Manpreet Singh, John Robinson, Aaron Vance, Martin Appiah, Abul Arafat

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Porous scaffolds have evolved, allowing personalised 3D-printed structures that can improve tissue reconstruction. By using scaffolds with specific porosity, Poisson's ratio and stiffness, load-bearing tissues such as tibial reconstruction can be improved. Recent studies suggest the potential for negative Poisson's ratio (−υ) meta-scaffolds in mimicking the behaviour of natural tissue, leading to improved healing and tissue reintegration. This study reveals a porous meta-scaffold that offers high −υ and can be personalised to match desired stiffness. By using laser powder bed fusion (L-PBF) of CoCrMo, a porous structure was created, characterised by its ability to achieve heightened −υ. Prototype testing and numerical modelling unveiled a proxy-model capable of predicting and personalising the porosity, yield strength, elastic modulus, and −υ of the tibial meta-scaffold representing a novel contribution to the field. The surrogate model also aids characterising the impact of design variables such as of the scaffold on the key performance requirements of the tibial scaffold. This approach enables the fabrication of porous biomaterials with personalised properties, specifically suited for load-bearing tibial reconstruction. The resulting meta-scaffold offers −υ ranging from -0.16 to -0.38, porosity between 73.46% and 85.36%, yield strength of 30–80 MPa, and elastic modulus ranging from 8.6 to 22.6 GPa. The optimised architecture feature −υ of 0.223 and a targeted elastic modulus of 17.53 GPa, while also showcasing yield strength and porosity of 57.2 MPa and 76.35%, respectively. By combining 3D printing with tailored scaffolds, this study opens doors to mass customisation of improved load-bearing porous biomaterials that of negative Poisson's ratio and stiffness matching.

Original languageEnglish
Article number100163
Number of pages15
JournalAnnals of 3D Printed Medicine
Volume15
Early online date22 Jun 2024
DOIs
Publication statusPublished - 1 Aug 2024

Bibliographical note

© 2024 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Keywords

  • Additive manufacturing
  • Auxetic
  • Bone scaffold
  • Laser-powder bed fusion
  • Meta-biomaterials
  • Metamaterials
  • Negative Poisson's ratio

Fingerprint

Dive into the research topics of '3D printed CoCrMo personalised load-bearing meta-scaffold for critical size tibial reconstruction'. Together they form a unique fingerprint.

Cite this