5-HTR3 and 5-HTR4 located on the mitochondrial membrane and functionally regulated mitochondrial functions

Qingyi Wang, Huiyuan Zhang, Hao Xu, Dongqing Guo, Hui Shi, Yuan Li, Weiwei Zhang, Yuchun Gu

Research output: Contribution to journalArticle

Abstract

5-HT has been reported to possess significant effects on cardiac activities, but activation of 5-HTR on the cell membrane failed to illustrate the controversial cardiac reaction. Because 5-HT constantly comes across the cell membrane via 5-HT transporter (5-HTT) into the cytoplasm, whether 5-HTR is functional present on the cellular organelles is unknown. Here we show 5-HTR3 and 5-HTR4 were located in cardiac mitochondria, and regulated mitochondrial activities and cellular functions. Knock down 5-HTR3 and 5-HTR4 in neonatal cardiomyocytes resulted in significant increase of cell damage in response to hypoxia, and also led to alternation in heart beating. Activation of 5-HTR4 attenuated mitochondrial Ca2+ uptake under the both normoxic and hypoxic conditions, whereas 5-HTR3 augmented Ca2+ uptake only under hypoxia. 5-HTR3 and 5-HTR4 exerted the opposite effects on the mitochondrial respiration: 5-HTR3 increased RCR (respiration control ratio), but 5-HTR4 reduced RCR. Moreover, activation of 5-HTR3 and 5-HTR4 both significantly inhibited the opening of mPTP. Our results provided the first evidence that 5-HTR as a GPCR and an ion channel, functionally expressed in mitochondria and participated in the mitochondria function and regulation to maintain homeostasis of mitochondrial [Ca2+], ROS, and ATP generation efficiency in cardiomyocytes in response to stress and O2 tension.
Original languageEnglish
Article number37336
Number of pages10
JournalScientific Reports
Volume6
Early online date22 Nov 2016
DOIs
Publication statusPublished - 22 Nov 2016

Fingerprint

Mitochondrial Membranes
Serotonin
Mitochondria
Respiration
Cardiac Myocytes
Cell Membrane
Ion Channels
Organelles
Cytoplasm
Homeostasis
Adenosine Triphosphate
Hypoxia

Bibliographical note

© The Author(s) 2016. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Funding: research grants held by YCG (973 Project No. 2013CB531206, 973 Project
No. 2012CB517803 and NSF No. 81170236, No. 31127001, No. 81570245 and No. 31221002).

Keywords

  • Arrhythmias Energy metabolism

Cite this

Wang, Qingyi ; Zhang, Huiyuan ; Xu, Hao ; Guo, Dongqing ; Shi, Hui ; Li, Yuan ; Zhang, Weiwei ; Gu, Yuchun. / 5-HTR3 and 5-HTR4 located on the mitochondrial membrane and functionally regulated mitochondrial functions. In: Scientific Reports. 2016 ; Vol. 6.
@article{bdb050e7b0e64c95858d463720c1390e,
title = "5-HTR3 and 5-HTR4 located on the mitochondrial membrane and functionally regulated mitochondrial functions",
abstract = "5-HT has been reported to possess significant effects on cardiac activities, but activation of 5-HTR on the cell membrane failed to illustrate the controversial cardiac reaction. Because 5-HT constantly comes across the cell membrane via 5-HT transporter (5-HTT) into the cytoplasm, whether 5-HTR is functional present on the cellular organelles is unknown. Here we show 5-HTR3 and 5-HTR4 were located in cardiac mitochondria, and regulated mitochondrial activities and cellular functions. Knock down 5-HTR3 and 5-HTR4 in neonatal cardiomyocytes resulted in significant increase of cell damage in response to hypoxia, and also led to alternation in heart beating. Activation of 5-HTR4 attenuated mitochondrial Ca2+ uptake under the both normoxic and hypoxic conditions, whereas 5-HTR3 augmented Ca2+ uptake only under hypoxia. 5-HTR3 and 5-HTR4 exerted the opposite effects on the mitochondrial respiration: 5-HTR3 increased RCR (respiration control ratio), but 5-HTR4 reduced RCR. Moreover, activation of 5-HTR3 and 5-HTR4 both significantly inhibited the opening of mPTP. Our results provided the first evidence that 5-HTR as a GPCR and an ion channel, functionally expressed in mitochondria and participated in the mitochondria function and regulation to maintain homeostasis of mitochondrial [Ca2+], ROS, and ATP generation efficiency in cardiomyocytes in response to stress and O2 tension.",
keywords = "Arrhythmias Energy metabolism",
author = "Qingyi Wang and Huiyuan Zhang and Hao Xu and Dongqing Guo and Hui Shi and Yuan Li and Weiwei Zhang and Yuchun Gu",
note = "{\circledC} The Author(s) 2016. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Funding: research grants held by YCG (973 Project No. 2013CB531206, 973 Project No. 2012CB517803 and NSF No. 81170236, No. 31127001, No. 81570245 and No. 31221002).",
year = "2016",
month = "11",
day = "22",
doi = "10.1038/srep37336",
language = "English",
volume = "6",
journal = "Scientific Reports",
issn = "2045-2322",
publisher = "Nature Publishing Group",

}

5-HTR3 and 5-HTR4 located on the mitochondrial membrane and functionally regulated mitochondrial functions. / Wang, Qingyi; Zhang, Huiyuan; Xu, Hao; Guo, Dongqing; Shi, Hui; Li, Yuan; Zhang, Weiwei; Gu, Yuchun.

In: Scientific Reports, Vol. 6, 37336, 22.11.2016.

Research output: Contribution to journalArticle

TY - JOUR

T1 - 5-HTR3 and 5-HTR4 located on the mitochondrial membrane and functionally regulated mitochondrial functions

AU - Wang, Qingyi

AU - Zhang, Huiyuan

AU - Xu, Hao

AU - Guo, Dongqing

AU - Shi, Hui

AU - Li, Yuan

AU - Zhang, Weiwei

AU - Gu, Yuchun

N1 - © The Author(s) 2016. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Funding: research grants held by YCG (973 Project No. 2013CB531206, 973 Project No. 2012CB517803 and NSF No. 81170236, No. 31127001, No. 81570245 and No. 31221002).

PY - 2016/11/22

Y1 - 2016/11/22

N2 - 5-HT has been reported to possess significant effects on cardiac activities, but activation of 5-HTR on the cell membrane failed to illustrate the controversial cardiac reaction. Because 5-HT constantly comes across the cell membrane via 5-HT transporter (5-HTT) into the cytoplasm, whether 5-HTR is functional present on the cellular organelles is unknown. Here we show 5-HTR3 and 5-HTR4 were located in cardiac mitochondria, and regulated mitochondrial activities and cellular functions. Knock down 5-HTR3 and 5-HTR4 in neonatal cardiomyocytes resulted in significant increase of cell damage in response to hypoxia, and also led to alternation in heart beating. Activation of 5-HTR4 attenuated mitochondrial Ca2+ uptake under the both normoxic and hypoxic conditions, whereas 5-HTR3 augmented Ca2+ uptake only under hypoxia. 5-HTR3 and 5-HTR4 exerted the opposite effects on the mitochondrial respiration: 5-HTR3 increased RCR (respiration control ratio), but 5-HTR4 reduced RCR. Moreover, activation of 5-HTR3 and 5-HTR4 both significantly inhibited the opening of mPTP. Our results provided the first evidence that 5-HTR as a GPCR and an ion channel, functionally expressed in mitochondria and participated in the mitochondria function and regulation to maintain homeostasis of mitochondrial [Ca2+], ROS, and ATP generation efficiency in cardiomyocytes in response to stress and O2 tension.

AB - 5-HT has been reported to possess significant effects on cardiac activities, but activation of 5-HTR on the cell membrane failed to illustrate the controversial cardiac reaction. Because 5-HT constantly comes across the cell membrane via 5-HT transporter (5-HTT) into the cytoplasm, whether 5-HTR is functional present on the cellular organelles is unknown. Here we show 5-HTR3 and 5-HTR4 were located in cardiac mitochondria, and regulated mitochondrial activities and cellular functions. Knock down 5-HTR3 and 5-HTR4 in neonatal cardiomyocytes resulted in significant increase of cell damage in response to hypoxia, and also led to alternation in heart beating. Activation of 5-HTR4 attenuated mitochondrial Ca2+ uptake under the both normoxic and hypoxic conditions, whereas 5-HTR3 augmented Ca2+ uptake only under hypoxia. 5-HTR3 and 5-HTR4 exerted the opposite effects on the mitochondrial respiration: 5-HTR3 increased RCR (respiration control ratio), but 5-HTR4 reduced RCR. Moreover, activation of 5-HTR3 and 5-HTR4 both significantly inhibited the opening of mPTP. Our results provided the first evidence that 5-HTR as a GPCR and an ion channel, functionally expressed in mitochondria and participated in the mitochondria function and regulation to maintain homeostasis of mitochondrial [Ca2+], ROS, and ATP generation efficiency in cardiomyocytes in response to stress and O2 tension.

KW - Arrhythmias Energy metabolism

UR - http://www.nature.com/articles/srep37336

U2 - 10.1038/srep37336

DO - 10.1038/srep37336

M3 - Article

VL - 6

JO - Scientific Reports

JF - Scientific Reports

SN - 2045-2322

M1 - 37336

ER -