Abstract
This paper presents a comparative study of three closely related Bayesian models for unsupervised document level sentiment classification, namely, the latent sentiment model (LSM), the joint sentiment-topic (JST) model, and the Reverse-JST model. Extensive experiments have been conducted on two corpora, the movie review dataset and the multi-domain sentiment dataset. It has been found that while all the three models achieve either better or comparable performance on these two corpora when compared to the existing unsupervised sentiment classification approaches, both JST and Reverse-JST are able to extract sentiment-oriented topics. In addition, Reverse-JST always performs worse than JST suggesting that the JST model is more appropriate for joint sentiment topic detection.
Original language | English |
---|---|
Title of host publication | Proceeding : CoNLL '10 proceedings of the fourteenth conference on computational natural language learning |
Editors | Mirella Lapata |
Place of Publication | Stroudsburg, PA (US) |
Publisher | Association for Computational Linguistics |
Pages | 144-152 |
Number of pages | 9 |
ISBN (Print) | 978-1-932432-83-1 |
Publication status | Published - 1 Jan 2010 |
Event | 14th Conference on Computational Natural Language Learning, CoNLL'10 - Uppsala, Sweden Duration: 15 Jul 2010 → 16 Jul 2010 |
Conference
Conference | 14th Conference on Computational Natural Language Learning, CoNLL'10 |
---|---|
Country/Territory | Sweden |
City | Uppsala |
Period | 15/07/10 → 16/07/10 |