A novel concentration dependent amino acid ion pair strategy to mediate drug permeation using indomethacin as a model insoluble drug

Amr ElShaer, Peter Hanson, Afzal R. Mohammed

Research output: Contribution to journalArticle

Abstract

Assessment of oral drug bioavailability is an important parameter for new chemical entities (NCEs) in drug development cycle. After evaluating the pharmacological response of these new molecules, the following critical stage is to investigate their in vitro permeability. Despite the great success achieved by prodrugs, covalent linking the drug molecule with a hydrophobic moiety might result in a new entity that might be toxic or ineffective. Therefore, an alternative that would improve the drug uptake without affecting the efficacy of the drug molecule would be advantageous. The aim of the current study is to investigate the effect of ion-pairing on the permeability profile of a model drug: indomethacin (IND) to understand the mechanism behind the permeability improvement across Caco-2 monolayers. Arginine and lysine formed ion-pairs with IND at various molar ratios 1:1, 1:2, 1:4 and 1:8 as reflected by the double reciprocal graphs. The partitioning capacities of the IND were evaluated using octanol/water partitioning studies and the apparent permeabilities (P app) were measured across Caco-2 monolayers for the different formulations. Partitioning studies reflected the high hydrophobicity of IND (Log P = 3) which dropped upon increasing the concentrations of arginine/lysine in the ion pairs. Nevertheless, the prepared ion pairs improved IND permeability especially after 60 min of the start of the experiment. Coupling partitioning and permeability results suggest a decrease in the passive transcellular uptake due to the drop in IND portioning capacities and a possible involvement of active carriers. Future work will investigate which transport gene might be involved in the absorption of the ion paired formulations using molecular biology technologies. © 2014 Elsevier B.V. All rights reserved.

LanguageEnglish
Pages124-131
Number of pages8
JournalEuropean Journal of Pharmaceutical Sciences
Volume62
Issue number1
Early online date4 Jun 2014
DOIs
Publication statusPublished - Oct 2014

Fingerprint

Indomethacin
Permeability
Ions
Amino Acids
Pharmaceutical Preparations
Lysine
Arginine
Octanols
Poisons
Prodrugs
Hydrophobic and Hydrophilic Interactions
Biological Availability
Molecular Biology
Pharmacology
Technology
Water
Genes

Keywords

  • active carriers
  • amino acids
  • caco-2 monolayers
  • ion-pairs
  • permeability

Cite this

@article{1b49117f97614c12b9392c9f3f61c7a7,
title = "A novel concentration dependent amino acid ion pair strategy to mediate drug permeation using indomethacin as a model insoluble drug",
abstract = "Assessment of oral drug bioavailability is an important parameter for new chemical entities (NCEs) in drug development cycle. After evaluating the pharmacological response of these new molecules, the following critical stage is to investigate their in vitro permeability. Despite the great success achieved by prodrugs, covalent linking the drug molecule with a hydrophobic moiety might result in a new entity that might be toxic or ineffective. Therefore, an alternative that would improve the drug uptake without affecting the efficacy of the drug molecule would be advantageous. The aim of the current study is to investigate the effect of ion-pairing on the permeability profile of a model drug: indomethacin (IND) to understand the mechanism behind the permeability improvement across Caco-2 monolayers. Arginine and lysine formed ion-pairs with IND at various molar ratios 1:1, 1:2, 1:4 and 1:8 as reflected by the double reciprocal graphs. The partitioning capacities of the IND were evaluated using octanol/water partitioning studies and the apparent permeabilities (P app) were measured across Caco-2 monolayers for the different formulations. Partitioning studies reflected the high hydrophobicity of IND (Log P = 3) which dropped upon increasing the concentrations of arginine/lysine in the ion pairs. Nevertheless, the prepared ion pairs improved IND permeability especially after 60 min of the start of the experiment. Coupling partitioning and permeability results suggest a decrease in the passive transcellular uptake due to the drop in IND portioning capacities and a possible involvement of active carriers. Future work will investigate which transport gene might be involved in the absorption of the ion paired formulations using molecular biology technologies. {\circledC} 2014 Elsevier B.V. All rights reserved.",
keywords = "active carriers, amino acids, caco-2 monolayers, ion-pairs, permeability",
author = "Amr ElShaer and Peter Hanson and Mohammed, {Afzal R.}",
year = "2014",
month = "10",
doi = "10.1016/j.ejps.2014.05.022",
language = "English",
volume = "62",
pages = "124--131",
journal = "European Journal of Pharmaceutical Sciences",
issn = "0928-0987",
publisher = "Elsevier",
number = "1",

}

TY - JOUR

T1 - A novel concentration dependent amino acid ion pair strategy to mediate drug permeation using indomethacin as a model insoluble drug

AU - ElShaer, Amr

AU - Hanson, Peter

AU - Mohammed, Afzal R.

PY - 2014/10

Y1 - 2014/10

N2 - Assessment of oral drug bioavailability is an important parameter for new chemical entities (NCEs) in drug development cycle. After evaluating the pharmacological response of these new molecules, the following critical stage is to investigate their in vitro permeability. Despite the great success achieved by prodrugs, covalent linking the drug molecule with a hydrophobic moiety might result in a new entity that might be toxic or ineffective. Therefore, an alternative that would improve the drug uptake without affecting the efficacy of the drug molecule would be advantageous. The aim of the current study is to investigate the effect of ion-pairing on the permeability profile of a model drug: indomethacin (IND) to understand the mechanism behind the permeability improvement across Caco-2 monolayers. Arginine and lysine formed ion-pairs with IND at various molar ratios 1:1, 1:2, 1:4 and 1:8 as reflected by the double reciprocal graphs. The partitioning capacities of the IND were evaluated using octanol/water partitioning studies and the apparent permeabilities (P app) were measured across Caco-2 monolayers for the different formulations. Partitioning studies reflected the high hydrophobicity of IND (Log P = 3) which dropped upon increasing the concentrations of arginine/lysine in the ion pairs. Nevertheless, the prepared ion pairs improved IND permeability especially after 60 min of the start of the experiment. Coupling partitioning and permeability results suggest a decrease in the passive transcellular uptake due to the drop in IND portioning capacities and a possible involvement of active carriers. Future work will investigate which transport gene might be involved in the absorption of the ion paired formulations using molecular biology technologies. © 2014 Elsevier B.V. All rights reserved.

AB - Assessment of oral drug bioavailability is an important parameter for new chemical entities (NCEs) in drug development cycle. After evaluating the pharmacological response of these new molecules, the following critical stage is to investigate their in vitro permeability. Despite the great success achieved by prodrugs, covalent linking the drug molecule with a hydrophobic moiety might result in a new entity that might be toxic or ineffective. Therefore, an alternative that would improve the drug uptake without affecting the efficacy of the drug molecule would be advantageous. The aim of the current study is to investigate the effect of ion-pairing on the permeability profile of a model drug: indomethacin (IND) to understand the mechanism behind the permeability improvement across Caco-2 monolayers. Arginine and lysine formed ion-pairs with IND at various molar ratios 1:1, 1:2, 1:4 and 1:8 as reflected by the double reciprocal graphs. The partitioning capacities of the IND were evaluated using octanol/water partitioning studies and the apparent permeabilities (P app) were measured across Caco-2 monolayers for the different formulations. Partitioning studies reflected the high hydrophobicity of IND (Log P = 3) which dropped upon increasing the concentrations of arginine/lysine in the ion pairs. Nevertheless, the prepared ion pairs improved IND permeability especially after 60 min of the start of the experiment. Coupling partitioning and permeability results suggest a decrease in the passive transcellular uptake due to the drop in IND portioning capacities and a possible involvement of active carriers. Future work will investigate which transport gene might be involved in the absorption of the ion paired formulations using molecular biology technologies. © 2014 Elsevier B.V. All rights reserved.

KW - active carriers

KW - amino acids

KW - caco-2 monolayers

KW - ion-pairs

KW - permeability

UR - http://www.scopus.com/inward/record.url?scp=84903152165&partnerID=8YFLogxK

U2 - 10.1016/j.ejps.2014.05.022

DO - 10.1016/j.ejps.2014.05.022

M3 - Article

VL - 62

SP - 124

EP - 131

JO - European Journal of Pharmaceutical Sciences

T2 - European Journal of Pharmaceutical Sciences

JF - European Journal of Pharmaceutical Sciences

SN - 0928-0987

IS - 1

ER -