An evaluating study of using thermal imaging and convolutional neural network for fault diagnosis of reciprocating compressors

Rongfeng Deng*, Xiaoli Tang, Lin Song, Abdullahi Abdulmumeer, Fengshou Gu, Andrew D. Ball

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

As an essential mechanical device in many industrial applications, reciprocating compressors may be subject to thermal performance failures, mechanical function failures and motor faults resulting in extremely severe catastrophic collapses. Generally, the presence of such faults affects the temperature field distribution ofthe device. Infrared thermography technology can detect the thermal radiation signal ofan object and converts it into images, which is sensitive and reliable to monitor the condition of reciprocating compressor systems. In this paper, three kinds of faults are simulated in an uncontrolled temperature environment. The temperature distribution signal of areciprocating compressor is captured by a remote infrared camera in the form ofaheat map during the experimental process. A slight shaking window is employed to crop the photographed range ofexperimental equipment, and 30% ofeach type ofimages are flipped to preventthe image position information from affecting the classification results. A convolutional neural networks (CNN) is involved for evaluating the monitoring by classifying three common faulty operations. The results demonstrate that thermal images contains the full information and can be a promising technique to diagnose the faults ofreciprocating compressors under various operating conditions with a classification accuracy ofmore than 98.59%.

Original languageEnglish
Pages (from-to)23-26
Number of pages4
JournalInternational Journal of COMADEM
Volume23
Issue number4
Publication statusPublished - 17 Oct 2020

Keywords

  • Convolutional Neural Network (CNN)
  • Fault Diagnosis
  • Reciprocating compressors
  • Thermal Imaging

Fingerprint

Dive into the research topics of 'An evaluating study of using thermal imaging and convolutional neural network for fault diagnosis of reciprocating compressors'. Together they form a unique fingerprint.

Cite this