Assessing economically viable carbon reductions for the production of ammonia from biomass gasification

Paul Gilbert*, Sarah Alexander, Patricia Thornley, John Brammer

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Greenhouse gas emissions from fertiliser production are set to increase before stabilising due to the increasing demand to secure sustainable food supplies for a growing global population. However, avoiding the impacts of climate change requires all sectors to decarbonise by a very high level within several decades. Economically viable carbon reductions of substituting natural gas reforming with biomass gasification for ammonia production are assessed using techno-economic and life cycle assessment. Greenhouse gas savings of 65% are achieved for the biomass gasification system and the internal rate of return is 9.8% at base-line biomass feedstock and ammonia prices. Uncertainties in the assumptions have been tested by performing sensitivity analysis, which show, for example with a ±50% change in feedstock price, the rate of return ranges between -0.1% and 18%. It would achieve its target rate of return of 20% at a carbon price of £32/t CO, making it cost competitive compared to using biomass for heat or electricity. However, the ability to remain competitive to investors will depend on the volatility of ammonia prices, whereby a significant decrease would require high carbon prices to compensate. Moreover, since no such project has been constructed previously, there is high technology risk associated with capital investment. With limited incentives for industrial intensive energy users to reduce their greenhouse gas emissions, a sensible policy mechanism could target the support of commercial demonstration plants to help ensure this risk barrier is resolved.
Original languageEnglish
Pages (from-to)581–589
Number of pages9
JournalJournal of Cleaner Production
Volume64
Early online date18 Sep 2013
DOIs
Publication statusPublished - 1 Feb 2014

Bibliographical note

©2013 The Authors. Published by Elsevier Ltd. Open access under CC BY license

The authors would like to thank EPSRC ‘Supergen biomass biofuels and energy crops II core’ for funding (EP/E039995/1).

Keywords

  • nitrogen fertiliser production
  • ammonia
  • techno economic assessment
  • life cycle assessment
  • climate change
  • biomass gasification

Fingerprint

Dive into the research topics of 'Assessing economically viable carbon reductions for the production of ammonia from biomass gasification'. Together they form a unique fingerprint.

Cite this