Bayesian classification with Gaussian processes

Christopher K. I. Williams, David Barber

Research output: Contribution to journalArticlepeer-review

Abstract

We consider the problem of assigning an input vector to one of m classes by predicting P(c|x) for c=1,...,m. For a two-class problem, the probability of class one given x is estimated by s(y(x)), where s(y)=1/(1+e-y). A Gaussian process prior is placed on y(x), and is combined with the training data to obtain predictions for new x points. We provide a Bayesian treatment, integrating over uncertainty in y and in the parameters that control the Gaussian process prior the necessary integration over y is carried out using Laplace's approximation. The method is generalized to multiclass problems (m>2) using the softmax function. We demonstrate the effectiveness of the method on a number of datasets.
Original languageEnglish
Pages (from-to)1342 -1351
Number of pages10
JournalIEEE Transactions on Pattern Analysis and Machine Intelligence
Volume20
Issue number12
DOIs
Publication statusPublished - 12 Dec 1998

Bibliographical note

©1998 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Keywords

  • assigning
  • input vector
  • probability
  • Gaussian process
  • training data
  • predictions
  • Bayesian treatment prior
  • uncertainty
  • Laplace
  • approximation
  • multi-class problems
  • softmax function

Fingerprint

Dive into the research topics of 'Bayesian classification with Gaussian processes'. Together they form a unique fingerprint.

Cite this