TY - JOUR
T1 - CART peptide in the nucleus accumbens shell acts downstream to dopamine and mediates the reward and reinforcement actions of morphine
AU - Upadhya, Manoj A.
AU - Nakhate, Kartik T.
AU - Kokare, Dadasaheb M.
AU - Singh, Uday
AU - Singru, Praful S.
AU - Subhedar, Nishikant K.
PY - 2012/3/1
Y1 - 2012/3/1
N2 - The opioid-mesolimbic-dopamine circuitry operates between ventral tegmental area (VTA) and nucleus accumbens (Acb) and serves as a major reward pathway. We hypothesized that the neuropeptide cocaine- and amphetamine-regulated transcript (CART) is involved in the natural reward action mediated by the circuitry. Therefore, the modulation of opioid-mesolimbic-dopamine reward circuitry by CART was investigated using pellet self-administration paradigm in operant chamber. Morphine administered bilaterally in shell region of Acb (AcbSh) significantly increased active lever pressings and pellet self-administration. While CART given bilaterally in the AcbSh significantly increased pellet self-administration, CART antibody produced no effect. Morphine induced pellet self-administration was potentiated by CART, and antagonized by CART antibody administered in AcbSh. A close interaction between dopamine and CART systems was observed. Several tyrosine hydroxylase (marker for dopamine) immunoreactive fibers were seen contacting CART neurons in the AcbSh. Intraperitoneal administration of pramipexole, a dopamine agonist, increased pellet self-administration. The effect was blocked by prior treatment with CART antibody targeted at AcbSh. CART-immunoreactive cells and fibers in the AcbSh, and cells but not fibers in hypothalamic paraventricular nucleus (PVN), were significantly increased in the animals trained in operant chamber. However, CART-immunoreactive profile in the medial forebrain bundle, VTA and arcuate nucleus of hypothalamus did not respond. We suggest that CART, released from the axonal terminals in the framework of AcbSh, may serve as the final output of the endogenous opioid-mesolimbic-dopamine circuitry that processes natural reward.
AB - The opioid-mesolimbic-dopamine circuitry operates between ventral tegmental area (VTA) and nucleus accumbens (Acb) and serves as a major reward pathway. We hypothesized that the neuropeptide cocaine- and amphetamine-regulated transcript (CART) is involved in the natural reward action mediated by the circuitry. Therefore, the modulation of opioid-mesolimbic-dopamine reward circuitry by CART was investigated using pellet self-administration paradigm in operant chamber. Morphine administered bilaterally in shell region of Acb (AcbSh) significantly increased active lever pressings and pellet self-administration. While CART given bilaterally in the AcbSh significantly increased pellet self-administration, CART antibody produced no effect. Morphine induced pellet self-administration was potentiated by CART, and antagonized by CART antibody administered in AcbSh. A close interaction between dopamine and CART systems was observed. Several tyrosine hydroxylase (marker for dopamine) immunoreactive fibers were seen contacting CART neurons in the AcbSh. Intraperitoneal administration of pramipexole, a dopamine agonist, increased pellet self-administration. The effect was blocked by prior treatment with CART antibody targeted at AcbSh. CART-immunoreactive cells and fibers in the AcbSh, and cells but not fibers in hypothalamic paraventricular nucleus (PVN), were significantly increased in the animals trained in operant chamber. However, CART-immunoreactive profile in the medial forebrain bundle, VTA and arcuate nucleus of hypothalamus did not respond. We suggest that CART, released from the axonal terminals in the framework of AcbSh, may serve as the final output of the endogenous opioid-mesolimbic-dopamine circuitry that processes natural reward.
UR - https://linkinghub.elsevier.com/retrieve/pii/S0028390811005089
U2 - 10.1016/j.neuropharm.2011.12.004
DO - 10.1016/j.neuropharm.2011.12.004
M3 - Article
SN - 0028-3908
VL - 62
SP - 1823
EP - 1833
JO - Neuropharmacology
JF - Neuropharmacology
IS - 4
ER -