Abstract
The chemical and structural changes of three lignocellulosic biomass samples during pyrolysis were investigated using both conventional and advanced characterization techniques. The use of ATR-FTIR as a characterization tool is extended by the proposal of a method to determine aromaticity, the calculation of both CH2/CH3 ratio and the degree of aromatic ring condensation ((R/C)u). With increasing temperature, the H/C and O/C ratios, XA and CH2/CH3 ratio decreased, while (R/C)u and aromaticity increased. The micropore network developed with increasing temperature, until the coalescence of pores at 1100 °C, which can be linked to increasing carbon densification, extent of aromatization and/or graphitization of the biomass chars. WAXRD-CFA measurements indicated the gradual formation of nearly parallel basic structural units with increasing carbonization temperature. The char development can be considered to occur in two steps: elimination of aliphatic compounds at low temperatures, and hydrogen abstraction and aromatic ring condensation at high temperatures.
Original language | English |
---|---|
Pages (from-to) | 941-948 |
Number of pages | 8 |
Journal | Bioresource Technology |
Volume | 243 |
Early online date | 6 Jul 2017 |
DOIs | |
Publication status | Published - Nov 2017 |
Bibliographical note
© 2017, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/Keywords
- aromaticity
- ATR-FTIR
- biochar
- CPMAS 13C NMR
- pyrolysis