Ciliary muscle morphology in emmetropia and ocular biometric correlates

Research output: Contribution to journalMeeting abstract

Abstract

Purpose: Recent studies have documented a link between axial myopia and ciliary muscle morphology; yet, the variation in biometric characteristics of the emmetropic ciliary muscle are not fully known. Ciliary muscle morphology, including symmetry, was investigated between both eyes of emmetropic participants and correlated to ocular biometric parameters.
Methods: Anterior segment optical coherence tomography (Zeiss, Visante) was utilised to image both eyes of 49 emmetropic participants (mean spherical equivalent refractive error (MSE) ≥ -0.55; < +0.75 D), aged 19 to 26 years. High resolution images were obtained of nasal and temporal aspects of the ciliary muscle in the relaxed state. MSE of both eyes was recorded using the Grand Seiko WAM 5500; axial length (AXL), anterior chamber depth (ACD) and lens thickness (LT) of the right eye were obtained using the Haag-streit Lenstar LS 900 biometer. A bespoke semi-objective analysis programme was used to measure a range of ciliary muscle parameters.
Results: Temporal ciliary muscle overall length (CML) was greater than nasal CML, in both eyes (right: 3.58 ± 0.40 mm and 3.85 ± 0.39 mm for nasal and temporal aspects, respectively, P < 0.001; left: 3.65 ± 0.35 mm and 3.88 ± 0.41 mm for nasal and temporal aspects, respectively, P < 0.001). Temporal ciliary muscle thickness (CMT) was greater than nasal CMT at 2 mm and 3 mm from the scleral spur (CM2 and CM3, respectively) in each eye (right CM2: 0.29 ± 0.05 mm and 0.32 ± 0.05 mm for nasal and temporal aspects, respectively, P < 0.001; left CM2: 0.30 ± 0.05 mm and 0.32 ± 0.05 mm for nasal and temporal aspects, respectively, P < 0.001; right CM3: 0.13 ± 0.05 mm and 0.16 ± 0.04 mm for nasal and temporal aspects, respectively, P < 0.001; left CM3: 0.14 ± 0.04 mm and 0.17 ± 0.05 mm for nasal and temporal aspects, respectively, P < 0.001). AXL was positively correlated with ciliary muscle anterior length (AL) (e.g. P < 0.001, r2 = 0.262 for left temporal aspect), CML (P = 0.003, r2 = 0.175 for right nasal aspect) and ACD (P = 0.01, r2 = 0.181).
Conclusions: Morphological characteristics of the ciliary muscle in emmetropic eyes display high levels of symmetry between the eyes. Greater CML and AL are linked to greater AXL and ACD, indicating ciliary muscle growth with normal ocular development.
Original languageEnglish
Pages (from-to)5997
Number of pages1
JournalInvestigative Ophthalmology and Visual Science
Volume56
Issue number7
Publication statusPublished - 30 Jun 2015
EventARVO 2015 Annual Meeting : Powerful Connections: Vision Research and Online Networking - Colorado Convention Center (CCC), Denver, CO, United States
Duration: 2 May 20157 May 2015

Fingerprint

Emmetropia
Nose
Muscles
Anterior Chamber
Temporal Muscle
Refractive Errors
Myopia
Optical Coherence Tomography
Lenses

Bibliographical note

ARVO 2015 Annual Meeting : Powerful Connections: Vision Research and Online Networking, 2-7 May 2015, Denver, CO, United States.

Cite this

@article{0f5d9c5c1e4441c9bade83c0867c2d48,
title = "Ciliary muscle morphology in emmetropia and ocular biometric correlates",
abstract = "Purpose: Recent studies have documented a link between axial myopia and ciliary muscle morphology; yet, the variation in biometric characteristics of the emmetropic ciliary muscle are not fully known. Ciliary muscle morphology, including symmetry, was investigated between both eyes of emmetropic participants and correlated to ocular biometric parameters. Methods: Anterior segment optical coherence tomography (Zeiss, Visante) was utilised to image both eyes of 49 emmetropic participants (mean spherical equivalent refractive error (MSE) ≥ -0.55; < +0.75 D), aged 19 to 26 years. High resolution images were obtained of nasal and temporal aspects of the ciliary muscle in the relaxed state. MSE of both eyes was recorded using the Grand Seiko WAM 5500; axial length (AXL), anterior chamber depth (ACD) and lens thickness (LT) of the right eye were obtained using the Haag-streit Lenstar LS 900 biometer. A bespoke semi-objective analysis programme was used to measure a range of ciliary muscle parameters. Results: Temporal ciliary muscle overall length (CML) was greater than nasal CML, in both eyes (right: 3.58 ± 0.40 mm and 3.85 ± 0.39 mm for nasal and temporal aspects, respectively, P < 0.001; left: 3.65 ± 0.35 mm and 3.88 ± 0.41 mm for nasal and temporal aspects, respectively, P < 0.001). Temporal ciliary muscle thickness (CMT) was greater than nasal CMT at 2 mm and 3 mm from the scleral spur (CM2 and CM3, respectively) in each eye (right CM2: 0.29 ± 0.05 mm and 0.32 ± 0.05 mm for nasal and temporal aspects, respectively, P < 0.001; left CM2: 0.30 ± 0.05 mm and 0.32 ± 0.05 mm for nasal and temporal aspects, respectively, P < 0.001; right CM3: 0.13 ± 0.05 mm and 0.16 ± 0.04 mm for nasal and temporal aspects, respectively, P < 0.001; left CM3: 0.14 ± 0.04 mm and 0.17 ± 0.05 mm for nasal and temporal aspects, respectively, P < 0.001). AXL was positively correlated with ciliary muscle anterior length (AL) (e.g. P < 0.001, r2 = 0.262 for left temporal aspect), CML (P = 0.003, r2 = 0.175 for right nasal aspect) and ACD (P = 0.01, r2 = 0.181). Conclusions: Morphological characteristics of the ciliary muscle in emmetropic eyes display high levels of symmetry between the eyes. Greater CML and AL are linked to greater AXL and ACD, indicating ciliary muscle growth with normal ocular development.",
author = "Richa Saigal and Davies, {Leon N.} and Sheppard, {Amy Louise}",
note = "ARVO 2015 Annual Meeting : Powerful Connections: Vision Research and Online Networking, 2-7 May 2015, Denver, CO, United States.",
year = "2015",
month = "6",
day = "30",
language = "English",
volume = "56",
pages = "5997",
journal = "Investigative Ophthalmology and Visual Science",
issn = "1552-5783",
publisher = "Association for Research in Vision and Ophthalmology Inc.",
number = "7",

}

Ciliary muscle morphology in emmetropia and ocular biometric correlates. / Saigal, Richa; Davies, Leon N.; Sheppard, Amy Louise.

In: Investigative Ophthalmology and Visual Science, Vol. 56, No. 7, 30.06.2015, p. 5997.

Research output: Contribution to journalMeeting abstract

TY - JOUR

T1 - Ciliary muscle morphology in emmetropia and ocular biometric correlates

AU - Saigal, Richa

AU - Davies, Leon N.

AU - Sheppard, Amy Louise

N1 - ARVO 2015 Annual Meeting : Powerful Connections: Vision Research and Online Networking, 2-7 May 2015, Denver, CO, United States.

PY - 2015/6/30

Y1 - 2015/6/30

N2 - Purpose: Recent studies have documented a link between axial myopia and ciliary muscle morphology; yet, the variation in biometric characteristics of the emmetropic ciliary muscle are not fully known. Ciliary muscle morphology, including symmetry, was investigated between both eyes of emmetropic participants and correlated to ocular biometric parameters. Methods: Anterior segment optical coherence tomography (Zeiss, Visante) was utilised to image both eyes of 49 emmetropic participants (mean spherical equivalent refractive error (MSE) ≥ -0.55; < +0.75 D), aged 19 to 26 years. High resolution images were obtained of nasal and temporal aspects of the ciliary muscle in the relaxed state. MSE of both eyes was recorded using the Grand Seiko WAM 5500; axial length (AXL), anterior chamber depth (ACD) and lens thickness (LT) of the right eye were obtained using the Haag-streit Lenstar LS 900 biometer. A bespoke semi-objective analysis programme was used to measure a range of ciliary muscle parameters. Results: Temporal ciliary muscle overall length (CML) was greater than nasal CML, in both eyes (right: 3.58 ± 0.40 mm and 3.85 ± 0.39 mm for nasal and temporal aspects, respectively, P < 0.001; left: 3.65 ± 0.35 mm and 3.88 ± 0.41 mm for nasal and temporal aspects, respectively, P < 0.001). Temporal ciliary muscle thickness (CMT) was greater than nasal CMT at 2 mm and 3 mm from the scleral spur (CM2 and CM3, respectively) in each eye (right CM2: 0.29 ± 0.05 mm and 0.32 ± 0.05 mm for nasal and temporal aspects, respectively, P < 0.001; left CM2: 0.30 ± 0.05 mm and 0.32 ± 0.05 mm for nasal and temporal aspects, respectively, P < 0.001; right CM3: 0.13 ± 0.05 mm and 0.16 ± 0.04 mm for nasal and temporal aspects, respectively, P < 0.001; left CM3: 0.14 ± 0.04 mm and 0.17 ± 0.05 mm for nasal and temporal aspects, respectively, P < 0.001). AXL was positively correlated with ciliary muscle anterior length (AL) (e.g. P < 0.001, r2 = 0.262 for left temporal aspect), CML (P = 0.003, r2 = 0.175 for right nasal aspect) and ACD (P = 0.01, r2 = 0.181). Conclusions: Morphological characteristics of the ciliary muscle in emmetropic eyes display high levels of symmetry between the eyes. Greater CML and AL are linked to greater AXL and ACD, indicating ciliary muscle growth with normal ocular development.

AB - Purpose: Recent studies have documented a link between axial myopia and ciliary muscle morphology; yet, the variation in biometric characteristics of the emmetropic ciliary muscle are not fully known. Ciliary muscle morphology, including symmetry, was investigated between both eyes of emmetropic participants and correlated to ocular biometric parameters. Methods: Anterior segment optical coherence tomography (Zeiss, Visante) was utilised to image both eyes of 49 emmetropic participants (mean spherical equivalent refractive error (MSE) ≥ -0.55; < +0.75 D), aged 19 to 26 years. High resolution images were obtained of nasal and temporal aspects of the ciliary muscle in the relaxed state. MSE of both eyes was recorded using the Grand Seiko WAM 5500; axial length (AXL), anterior chamber depth (ACD) and lens thickness (LT) of the right eye were obtained using the Haag-streit Lenstar LS 900 biometer. A bespoke semi-objective analysis programme was used to measure a range of ciliary muscle parameters. Results: Temporal ciliary muscle overall length (CML) was greater than nasal CML, in both eyes (right: 3.58 ± 0.40 mm and 3.85 ± 0.39 mm for nasal and temporal aspects, respectively, P < 0.001; left: 3.65 ± 0.35 mm and 3.88 ± 0.41 mm for nasal and temporal aspects, respectively, P < 0.001). Temporal ciliary muscle thickness (CMT) was greater than nasal CMT at 2 mm and 3 mm from the scleral spur (CM2 and CM3, respectively) in each eye (right CM2: 0.29 ± 0.05 mm and 0.32 ± 0.05 mm for nasal and temporal aspects, respectively, P < 0.001; left CM2: 0.30 ± 0.05 mm and 0.32 ± 0.05 mm for nasal and temporal aspects, respectively, P < 0.001; right CM3: 0.13 ± 0.05 mm and 0.16 ± 0.04 mm for nasal and temporal aspects, respectively, P < 0.001; left CM3: 0.14 ± 0.04 mm and 0.17 ± 0.05 mm for nasal and temporal aspects, respectively, P < 0.001). AXL was positively correlated with ciliary muscle anterior length (AL) (e.g. P < 0.001, r2 = 0.262 for left temporal aspect), CML (P = 0.003, r2 = 0.175 for right nasal aspect) and ACD (P = 0.01, r2 = 0.181). Conclusions: Morphological characteristics of the ciliary muscle in emmetropic eyes display high levels of symmetry between the eyes. Greater CML and AL are linked to greater AXL and ACD, indicating ciliary muscle growth with normal ocular development.

M3 - Meeting abstract

VL - 56

SP - 5997

JO - Investigative Ophthalmology and Visual Science

JF - Investigative Ophthalmology and Visual Science

SN - 1552-5783

IS - 7

ER -