Classification of Adversarial Attacks Using Ensemble Clustering Approach

Pongsakorn Tatongjai, Tossapon Boongoen*, Natthakan Iam-On, Nitin Naik, Longzhi Yang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

As more business transactions and information services have been implemented via communication networks, both personal and organization assets encounter a higher risk of attacks. To safeguard these, a perimeter defence like NIDS (network-based intrusion detection system) can be effective for known intrusions. There has been a great deal of attention within the joint community of security and data science to improve machine-learning based NIDS such that it becomes more accurate for adversarial attacks, where obfuscation techniques are applied to disguise patterns of intrusive traffics. The current research focuses on non-payload connections at the TCP (transmission control protocol) stack level that is applicable to different network applications. In contrary to the wrapper method introduced with the benchmark dataset, three new filter models are proposed to transform the feature space without knowledge of class labels. These ECT (ensemble clustering based transformation) techniques, i.e., ECT-Subspace, ECT-Noise and ECT-Combined, are developed using the concept of ensemble clustering and three different ensemble generation strategies, i.e., random feature subspace, feature noise injection and their combinations. Based on the empirical study with published dataset and four classification algorithms, new models usually outperform that original wrapper and other filter alternatives found in the literature. This is similarly summarized from the first experiment with basic classification of legitimate and direct attacks, and the second that focuses on recognizing obfuscated intrusions. In addition, analysis of algorithmic parameters, i.e., ensemble size and level of noise, is provided as a guideline for a practical use.

Original languageEnglish
Pages (from-to)2479-2498
Number of pages20
JournalComputers, Materials and Continua
Volume74
Issue number2
Early online date31 Oct 2022
DOIs
Publication statusPublished - 2023

Bibliographical note

© 2022. This work is licensed under a Creative Commons Attribution 4.0 International License https://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Funding Information
This work is funded by Newton Institutional Link 2020–21 project (NRCT and British Council) and the corresponding author is the project PI. This paper invents and evaluates an ensemble-based data transformation method on network security data (guided by Dr Naik and Dr Yang), then it will be further exploited to classify burnt scar samples in remote sensing images. The authors would like to thank Prof. Qiang Shen and his team at Aberystwyth University for consultation, and Thai partners (GISTDA, DTI, Department of Forestry and RMUTL Chiang Rai) for support.

Keywords

  • adversarial attack
  • ensemble clustering
  • feature transformation
  • Intrusion detection
  • machine learning

Fingerprint

Dive into the research topics of 'Classification of Adversarial Attacks Using Ensemble Clustering Approach'. Together they form a unique fingerprint.

Cite this