Comprehensive Experimental and Theoretical Study of the CO + NO Reaction Catalyzed by Au/Ni Nanoparticles

Georgios Kyriakou, Antonio M. Márquez, Juan P. Holgado, Martin Joe Taylor, Andrew E. H. Wheatley, Joshua P. Mehta, Javier Fernández Sanz, Simon K. Beaumont, Richard M. Lambert

Research output: Contribution to journalArticlepeer-review


The catalytic and structural properties of five different nanoparticle catalysts with varying Au/Ni composition were studied by six different methods, including in situ X-ray absorption spectroscopy and density functional theory (DFT) calculations. The as-prepared materials contained substantial amounts of residual capping agent arising from the commonly used synthetic procedure. Thorough removal of this material by oxidation was essential for the acquisition of valid catalytic data. All catalysts were highly selective toward N 2 formation, with 50-50 Au:Ni material being best of all. In situ X-ray absorption near edge structure spectroscopy showed that although Au acted to moderate the oxidation state of Ni, there was no clear correlation between catalytic activity and nickel oxidation state. However, in situ extended X-ray absorption fine structure spectroscopy showed a good correlation between Au-Ni coordination number (highest for Ni 50 Au 50 ) and catalytic activity. Importantly, these measurements also demonstrated substantial and reversible Au/Ni intermixing as a function of temperature between 550 °C (reaction temperature) and 150 °C, underlining the importance of in situ methods to the correct interpretation of reaction data. DFT calculations on smooth, stepped, monometallic and bimetallic surfaces showed that N + N recombination rather than NO dissociation was always rate-determining and that the activation barrier to recombination reaction decreased with increased Au content, thus accounting for the experimental observations. Across the entire composition range, the oxidation state of Ni did not correlate with activity, in disagreement with earlier work, and theory showed that NiO itself should be catalytically inert. Au-Ni interactions were of paramount importance in promoting N + N recombination, the rate-limiting step.

Original languageEnglish
Pages (from-to)4919-4929
Number of pages11
JournalACS Catalysis
Issue number6
Early online date19 Apr 2019
Publication statusPublished - 7 Jun 2019

Bibliographical note

This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.


  • Bimetallic catalysts
  • DFT
  • active species
  • effect of Au
  • in situ measurements
  • reaction mechanism


Dive into the research topics of 'Comprehensive Experimental and Theoretical Study of the CO + NO Reaction Catalyzed by Au/Ni Nanoparticles'. Together they form a unique fingerprint.

Cite this