Abstract
Statistical complexity, a measure introduced in computational mechanics has been applied to MD simulated liquid water and other molecular systems. It has been found that statistical complexity does not converge in these systems but grows logarithmically without a limit. The coefficient of the growth has been introduced as a new molecular parameter which is invariant for a given liquid system. Using this new parameter extremely long time correlations in the system undetectable by traditional methods are elucidated. The existence of hundreds of picosecond and even nanosecond long correlations in bulk water has been demonstrated.
Original language | English |
---|---|
Pages (from-to) | 439-443 |
Number of pages | 5 |
Journal | Chemical Physics Letters |
Volume | 457 |
Issue number | 4-6 |
Early online date | 14 Apr 2008 |
DOIs | |
Publication status | Published - 27 May 2008 |
Bibliographical note
Erratum published: Nerukh, D. (2008). Erratum to "Computational mechanics reveals nanosecond time correlations in molecular dynamics of liquid systems" [Chem. Phys. Lett. 457 (2008) 439] DOI:10.1016/j.cplett.2008.04.043). Chemical physics letters, 459(1-6), 203. 10.1016/j.cplett.2008.05.059NOTICE: this is the author’s version of a work that was accepted for publication in Chemical Physics Letters. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Nerukh, D, 'Computational mechanics reveals nanosecond time correlations in molecular dynamics of liquid systems', Chemical Physics Letters, vol 457, no. 4-6 (2008) DOI http://dx.doi.org/10.1016/j.cplett.2008.04.043