TY - JOUR
T1 - Crossing and Anticrossing in Bent All-Glass Leakage Channel Microstructured Optical Fibers: The Effect of Polymer Coating
AU - Denisov, Alexander N.
AU - Dvoyrin, Vladislav V.
AU - Semjonov, Sergey L.
N1 - Copyright © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
PY - 2024/12
Y1 - 2024/12
N2 - This paper presents the results of a detailed theoretical study of the bending properties of all-glass leakage channel microstructured optical fibers (LC MOFs) with a polymer coating over a bending radius range from 4.8 cm to 10 cm. The dependencies of the effective refractive indices of the LC MOF modes on the bending radius have a number of crossings and anticrossings for different mode pairs. A detailed analysis showed that eight modes for each polarization have to be considered to correctly calculate the bending losses. These modes can be classified into relatively strong modes (three for each polarization) and relatively weak modes. The three strong modes have the most direct effect on the loss calculation. However, the relatively weaker modes also play a role through their coupling with the stronger modes, resulting in the appearance of local loss maxima in the loss dependencies for the strong modes. At a bending radius of 10 cm, the final leakage loss of the LC MOFs with a polymer coating is approximately four times lower than that of the LC MOFs without a coating. The significant reduction in losses paves the way for further optimization of the LC MOF geometric structure, leading to a reduction in the allowable bending radius.
AB - This paper presents the results of a detailed theoretical study of the bending properties of all-glass leakage channel microstructured optical fibers (LC MOFs) with a polymer coating over a bending radius range from 4.8 cm to 10 cm. The dependencies of the effective refractive indices of the LC MOF modes on the bending radius have a number of crossings and anticrossings for different mode pairs. A detailed analysis showed that eight modes for each polarization have to be considered to correctly calculate the bending losses. These modes can be classified into relatively strong modes (three for each polarization) and relatively weak modes. The three strong modes have the most direct effect on the loss calculation. However, the relatively weaker modes also play a role through their coupling with the stronger modes, resulting in the appearance of local loss maxima in the loss dependencies for the strong modes. At a bending radius of 10 cm, the final leakage loss of the LC MOFs with a polymer coating is approximately four times lower than that of the LC MOFs without a coating. The significant reduction in losses paves the way for further optimization of the LC MOF geometric structure, leading to a reduction in the allowable bending radius.
UR - https://www.mdpi.com/2304-6732/11/12/1204
U2 - 10.3390/photonics11121204
DO - 10.3390/photonics11121204
M3 - Article
SN - 2304-6732
VL - 11
JO - Photonics
JF - Photonics
IS - 12
M1 - 1204
ER -