Abstract
The objective of this chapter is to quantify the neuropathology of the cerebellar cortex in cases of the prion disease variant Creutzfeldt-Jakob disease (vCJD).
Hence, sequential sections of the cerebellum of 15 cases of vCJD were stained with H/E, or immunolabelled with a monoclonal antibody 12F10 against prion protein (PrP) and studied using quantitative techniques and spatial pattern analysis. A significant loss of Purkinje cells was evident in all cases. Densities of the vacuolation and the protease resistant form of prion protein (PrPSc) in the form of diffuse and florid plaques were greater in the granule cell layer (GL) than the molecular layer (ML). In the ML, vacuoles and PrPSc plaques, occurred in clusters which were regularly distributed along the folia, larger clusters of vacuoles and diffuse plaques being present in the GL. There was a negative spatial correlation between the vacuoles and the surviving Purkinje cells in the ML and a positive spatial correlation between the clusters of vacuoles and the diffuse PrPSc plaques in the ML and GL in five and six cases respectively. A canonical variate analysis (CVA) suggested a negative correlation between the densities of the vacuolation in the GL and the diffuse PrPSc plaques in the ML. The data suggest: 1) all laminae of the cerebellar cortex were affected by the pathology of vCJD, the GL more severely than the ML, 2) the pathology was topographically distributed especially in the Purkinje cell layer and GL, 3) pathological spread may occur in relation to a loop of anatomical projections connecting the cerebellum, thalamus, cerebral cortex, and pons, and 4) there are differences in the pathology of the cerebellum in vCJD compared with the M/M1 subtype of sporadic CJD (sCJD).
Hence, sequential sections of the cerebellum of 15 cases of vCJD were stained with H/E, or immunolabelled with a monoclonal antibody 12F10 against prion protein (PrP) and studied using quantitative techniques and spatial pattern analysis. A significant loss of Purkinje cells was evident in all cases. Densities of the vacuolation and the protease resistant form of prion protein (PrPSc) in the form of diffuse and florid plaques were greater in the granule cell layer (GL) than the molecular layer (ML). In the ML, vacuoles and PrPSc plaques, occurred in clusters which were regularly distributed along the folia, larger clusters of vacuoles and diffuse plaques being present in the GL. There was a negative spatial correlation between the vacuoles and the surviving Purkinje cells in the ML and a positive spatial correlation between the clusters of vacuoles and the diffuse PrPSc plaques in the ML and GL in five and six cases respectively. A canonical variate analysis (CVA) suggested a negative correlation between the densities of the vacuolation in the GL and the diffuse PrPSc plaques in the ML. The data suggest: 1) all laminae of the cerebellar cortex were affected by the pathology of vCJD, the GL more severely than the ML, 2) the pathology was topographically distributed especially in the Purkinje cell layer and GL, 3) pathological spread may occur in relation to a loop of anatomical projections connecting the cerebellum, thalamus, cerebral cortex, and pons, and 4) there are differences in the pathology of the cerebellum in vCJD compared with the M/M1 subtype of sporadic CJD (sCJD).
Original language | English |
---|---|
Title of host publication | Horizons in neuroscience research |
Editors | Andres Costa, Eugenio Villalba |
Place of Publication | Hauppage |
Publisher | Nova science |
Pages | 203-220 |
Number of pages | 17 |
Volume | 6 |
ISBN (Print) | 978-1-62100-063-1, 1-62100-063-X |
Publication status | Published - 1 Apr 2012 |
Keywords
- variant Creutzfeldt-Jakob disease
- vCJD
- spatial pattern
- Purkinje cells
- florid plaques
- diffuse plaques
- vacuolation
- cerebellum