TY - JOUR
T1 - Design of stainless steel cross-sections with outstand elements under stress gradients
AU - Gkantou, M.
AU - Bock, M.
AU - Theofanous, M.
PY - 2021/4
Y1 - 2021/4
N2 - A significant amount of research has been reported on stainless steel tubular sections, while studies on I- and C-sections remain relatively limited. This paper presents a comprehensive numerical study on the response of stainless steel I- and C-sections subjected to minor axis bending, with outstand flanges subjected to stress gradients. Numerical models are developed and validated against reported test data on austenitic stainless steel sections under minor axis bending. Subsequently, parametric studies using standardised material properties on austenitic, duplex and ferritic stainless steel grades, covering a wide variety of cross-section slendernesses, are carried out to expand the structural performance data. The results are used to assess the applicability of the Eurocode slenderness limits, revealing that the Class limit 3 for outstand flanges under stress gradient is overly conservative. Moreover, Eurocode underestimates the predicted bending strengths, whereas the level of accuracy and consistency improves for stocky sections, when the Continuous Strength Method is used. Aiming to address the lack of accuracy and consistency in the design predictions of slender sections, particular focus is placed on their performance. It is demonstrated that outstand elements under stress gradients exhibit significant inelastic behaviour after the compression flanges have locally buckled. Inelastic buckling behaviour is not considered in current design guidance, thus resulting in overly conservative and fundamentally incorrect strength predictions. An alternative design method based on the plastic effective width concept is proposed for slender stainless steel I- and C-sections in minor axis bending, which leads to more favourable and less scattered strength predictions.
AB - A significant amount of research has been reported on stainless steel tubular sections, while studies on I- and C-sections remain relatively limited. This paper presents a comprehensive numerical study on the response of stainless steel I- and C-sections subjected to minor axis bending, with outstand flanges subjected to stress gradients. Numerical models are developed and validated against reported test data on austenitic stainless steel sections under minor axis bending. Subsequently, parametric studies using standardised material properties on austenitic, duplex and ferritic stainless steel grades, covering a wide variety of cross-section slendernesses, are carried out to expand the structural performance data. The results are used to assess the applicability of the Eurocode slenderness limits, revealing that the Class limit 3 for outstand flanges under stress gradient is overly conservative. Moreover, Eurocode underestimates the predicted bending strengths, whereas the level of accuracy and consistency improves for stocky sections, when the Continuous Strength Method is used. Aiming to address the lack of accuracy and consistency in the design predictions of slender sections, particular focus is placed on their performance. It is demonstrated that outstand elements under stress gradients exhibit significant inelastic behaviour after the compression flanges have locally buckled. Inelastic buckling behaviour is not considered in current design guidance, thus resulting in overly conservative and fundamentally incorrect strength predictions. An alternative design method based on the plastic effective width concept is proposed for slender stainless steel I- and C-sections in minor axis bending, which leads to more favourable and less scattered strength predictions.
UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-85099173207&partnerID=MN8TOARS
UR - https://www.sciencedirect.com/science/article/pii/S0143974X20310439?via%3Dihub
U2 - 10.1016/j.jcsr.2020.106491
DO - 10.1016/j.jcsr.2020.106491
M3 - Article
SN - 0143-974X
VL - 179
JO - Journal of Constructional Steel Research
JF - Journal of Constructional Steel Research
M1 - 106491
ER -