Directing migration of endothelial progenitor cells with applied DC electric fields

Zhiqiang Zhao*, Lu Qin, Brian Reid, Jin Pu, Takahiko Hara, Min Zhao

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Naturally-occurring, endogenous electric fields (EFs) have been detected at skin wounds, damaged tissue sites and vasculature. Applied EFs guide migration of many types of cells, including endothelial cells to migrate directionally. Homing of endothelial progenitor cells (EPCs) to an injury site is important for repair of vasculature and also for angiogenesis. However, it has not been reported whether EPCs respond to applied EFs. Aiming to explore the possibility to use electric stimulation to regulate the progenitor cells and angiogenesis, we tested the effects of direct-current (DC) EFs on EPCs. We first used immunofluorescence to confirm the expression of endothelial progenitor markers in three lines of EPCs. We then cultured the progenitor cells in EFs. Using time-lapse video microscopy, we demonstrated that an applied DC EF directs migration of the EPCs toward the cathode. The progenitor cells also align and elongate in an EF. Inhibition of vascular endothelial growth factor (VEGF) receptor signaling completely abolished the EF-induced directional migration of the progenitor cells. We conclude that EFs are an effective signal that guides EPC migration through VEGF receptor signaling in vitro. Applied EFs may be used to control behaviors of EPCs in tissue engineering, in homing of EPCs to wounds and to an injury site in the vasculature.

Original languageEnglish
Pages (from-to)38-48
Number of pages11
JournalStem cell research
Volume8
Issue number1
Early online date16 Aug 2011
DOIs
Publication statusPublished - Jan 2012

Fingerprint

Dive into the research topics of 'Directing migration of endothelial progenitor cells with applied DC electric fields'. Together they form a unique fingerprint.

Cite this