Dose Optimization of Chloroquine by Pharmacokinetic Modeling During Pregnancy for the Treatment of Zika Virus Infection

Olusola Olafuyi, Raj K.s. Badhan

Research output: Contribution to journalArticle

Abstract

The insidious nature of Zika virus (ZIKV) infections can have a devastating consequence for foetal development. Recent reports have highlighted that chloroquine (CQ) is capable of inhibiting ZIKV endocytosis in brain cells. We applied pharmacokinetic modelling to develop a predictive model for CQ exposure to identify an optimal maternal/foetal dosing regimen to prevent ZIKV endocytosis in brain cells. Model validation utilised 13 non-pregnancy and 3 pregnancy clinical studies and a therapeutic CQ plasma window of 0.3-2 μM was derived. Dosing regimens used in rheumatoid arthritis, systemic lupus erythematosus and malaria were assessed for their ability to target this window. Dosing regimen identified that weekly doses used in malaria were not sufficient to reach the lower therapeutic window, however daily doses of 150 mg achieved this therapeutic window. The impact of gestational age was further assessed and culminated in a final proposed regimen of 600 mg on day 1, 300 mg on day 2 and 3 and 150 mg thereafter until the end of trimester 2, which resulted in maintaining 65 % and 94 % of subjects with a trough plasma concentration above the lower therapeutic window on day 6 and at term, respectively.
Original languageEnglish
JournalJournal of Pharmaceutical Sciences
Early online date3 Nov 2018
DOIs
Publication statusE-pub ahead of print - 3 Nov 2018

Fingerprint

Chloroquine
Pharmacokinetics
Pregnancy
Endocytosis
Malaria
Brain
Therapeutics
Fetal Development
Systemic Lupus Erythematosus
Gestational Age
Rheumatoid Arthritis
Mothers
Zika Virus Infection
Zika Virus

Bibliographical note

© 2018, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

Keywords

  • Physiologically-based pharmacokinetics
  • Zika
  • malaria
  • pregnancy

Cite this

@article{f89d5c317c774085bb4bf282f356d658,
title = "Dose Optimization of Chloroquine by Pharmacokinetic Modeling During Pregnancy for the Treatment of Zika Virus Infection",
abstract = "The insidious nature of Zika virus (ZIKV) infections can have a devastating consequence for foetal development. Recent reports have highlighted that chloroquine (CQ) is capable of inhibiting ZIKV endocytosis in brain cells. We applied pharmacokinetic modelling to develop a predictive model for CQ exposure to identify an optimal maternal/foetal dosing regimen to prevent ZIKV endocytosis in brain cells. Model validation utilised 13 non-pregnancy and 3 pregnancy clinical studies and a therapeutic CQ plasma window of 0.3-2 μM was derived. Dosing regimens used in rheumatoid arthritis, systemic lupus erythematosus and malaria were assessed for their ability to target this window. Dosing regimen identified that weekly doses used in malaria were not sufficient to reach the lower therapeutic window, however daily doses of 150 mg achieved this therapeutic window. The impact of gestational age was further assessed and culminated in a final proposed regimen of 600 mg on day 1, 300 mg on day 2 and 3 and 150 mg thereafter until the end of trimester 2, which resulted in maintaining 65 {\%} and 94 {\%} of subjects with a trough plasma concentration above the lower therapeutic window on day 6 and at term, respectively.",
keywords = "Physiologically-based pharmacokinetics, Zika, malaria, pregnancy",
author = "Olusola Olafuyi and Badhan, {Raj K.s.}",
note = "{\circledC} 2018, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/",
year = "2018",
month = "11",
day = "3",
doi = "10.1016/j.xphs.2018.10.056",
language = "English",
journal = "Journal of Pharmaceutical Sciences",
issn = "0022-3549",
publisher = "John Wiley and Sons Inc.",

}

TY - JOUR

T1 - Dose Optimization of Chloroquine by Pharmacokinetic Modeling During Pregnancy for the Treatment of Zika Virus Infection

AU - Olafuyi, Olusola

AU - Badhan, Raj K.s.

N1 - © 2018, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

PY - 2018/11/3

Y1 - 2018/11/3

N2 - The insidious nature of Zika virus (ZIKV) infections can have a devastating consequence for foetal development. Recent reports have highlighted that chloroquine (CQ) is capable of inhibiting ZIKV endocytosis in brain cells. We applied pharmacokinetic modelling to develop a predictive model for CQ exposure to identify an optimal maternal/foetal dosing regimen to prevent ZIKV endocytosis in brain cells. Model validation utilised 13 non-pregnancy and 3 pregnancy clinical studies and a therapeutic CQ plasma window of 0.3-2 μM was derived. Dosing regimens used in rheumatoid arthritis, systemic lupus erythematosus and malaria were assessed for their ability to target this window. Dosing regimen identified that weekly doses used in malaria were not sufficient to reach the lower therapeutic window, however daily doses of 150 mg achieved this therapeutic window. The impact of gestational age was further assessed and culminated in a final proposed regimen of 600 mg on day 1, 300 mg on day 2 and 3 and 150 mg thereafter until the end of trimester 2, which resulted in maintaining 65 % and 94 % of subjects with a trough plasma concentration above the lower therapeutic window on day 6 and at term, respectively.

AB - The insidious nature of Zika virus (ZIKV) infections can have a devastating consequence for foetal development. Recent reports have highlighted that chloroquine (CQ) is capable of inhibiting ZIKV endocytosis in brain cells. We applied pharmacokinetic modelling to develop a predictive model for CQ exposure to identify an optimal maternal/foetal dosing regimen to prevent ZIKV endocytosis in brain cells. Model validation utilised 13 non-pregnancy and 3 pregnancy clinical studies and a therapeutic CQ plasma window of 0.3-2 μM was derived. Dosing regimens used in rheumatoid arthritis, systemic lupus erythematosus and malaria were assessed for their ability to target this window. Dosing regimen identified that weekly doses used in malaria were not sufficient to reach the lower therapeutic window, however daily doses of 150 mg achieved this therapeutic window. The impact of gestational age was further assessed and culminated in a final proposed regimen of 600 mg on day 1, 300 mg on day 2 and 3 and 150 mg thereafter until the end of trimester 2, which resulted in maintaining 65 % and 94 % of subjects with a trough plasma concentration above the lower therapeutic window on day 6 and at term, respectively.

KW - Physiologically-based pharmacokinetics

KW - Zika

KW - malaria

KW - pregnancy

UR - https://linkinghub.elsevier.com/retrieve/pii/S0022354918306890

U2 - 10.1016/j.xphs.2018.10.056

DO - 10.1016/j.xphs.2018.10.056

M3 - Article

JO - Journal of Pharmaceutical Sciences

JF - Journal of Pharmaceutical Sciences

SN - 0022-3549

ER -