TY - JOUR

T1 - Double critical phenomena in (water + polyacrylamides) solutions

AU - Rebelo, L.P.N.

AU - Visak, Z.P.

AU - De Sousa, H.C.

AU - Szydlowski, J.

AU - Gomes De Azevedo, R.

AU - Ramos, A.M.

AU - Najdanovic-Visak, V.

AU - Da Ponte, M.N.

AU - Klein, J.

PY - 2002/1/26

Y1 - 2002/1/26

N2 - Aqueous solutions of a copolymer derivative of a polyacrylamide showed very interesting behavior, that in which the system evolves from one kind of double criticality (pressure−hypercritical point) to another (temperature−hypercritical point) as polymer molecular weight decreases. While in the neighboring region of the former point one expects a change from contraction to expansion upon mixing with increasing pressure; in the latter, mixing should be accompanied by a change in the sign of the excess enthalpy as temperature increases. L−L equilibria studies were performed in a wide range of (T, p) experimental conditions (300 < T/K < 460, 0 < p/bar < 700). Poly(N-isopropylacrylamide), usually called PNIPAAM, and its copolymer derivative poly(N-isopropylacrylamide/1-deoxy-1-methacrylamido-d-glucitol), herein referred to as CP, were investigated for several chain lengths and compositions. An He/Ne laser light scattering technique was used for the determination of cloud-point (T, p, x) conditions. The experimental results were used to assist in the determination of computed values at temperatures beyond experimental accessibility, which are obtained by the application of a modified Flory−Huggins model. The model also estimates the excess properties of these solutions. Because of the intrinsic self-associating nature of these systems, all studied solutions show a lower critical solution temperature (LCST). Both modeling results and H/D isotope substitution effects suggest also the existence of upper critical solution temperatures (UCST) and therefore closed-loop-type phase diagrams. However, these upper-temperature branches are experimentally inaccessible. Pressure effects are particularly interesting. For a low-MW CP, experimental data display a tendency toward a reentrant T−p locus, which supports the conjecture that these systems are inherently of the closed-loop type. In the cases of PNIPAAMs and high-MW CPs, the T−p isopleths show extrema. The copolymer aqueous solutions under study in this work model a single chemical system where pressure−hypercritical behavior evolves to a temperature−hypercritical one as the chain length decreases.

AB - Aqueous solutions of a copolymer derivative of a polyacrylamide showed very interesting behavior, that in which the system evolves from one kind of double criticality (pressure−hypercritical point) to another (temperature−hypercritical point) as polymer molecular weight decreases. While in the neighboring region of the former point one expects a change from contraction to expansion upon mixing with increasing pressure; in the latter, mixing should be accompanied by a change in the sign of the excess enthalpy as temperature increases. L−L equilibria studies were performed in a wide range of (T, p) experimental conditions (300 < T/K < 460, 0 < p/bar < 700). Poly(N-isopropylacrylamide), usually called PNIPAAM, and its copolymer derivative poly(N-isopropylacrylamide/1-deoxy-1-methacrylamido-d-glucitol), herein referred to as CP, were investigated for several chain lengths and compositions. An He/Ne laser light scattering technique was used for the determination of cloud-point (T, p, x) conditions. The experimental results were used to assist in the determination of computed values at temperatures beyond experimental accessibility, which are obtained by the application of a modified Flory−Huggins model. The model also estimates the excess properties of these solutions. Because of the intrinsic self-associating nature of these systems, all studied solutions show a lower critical solution temperature (LCST). Both modeling results and H/D isotope substitution effects suggest also the existence of upper critical solution temperatures (UCST) and therefore closed-loop-type phase diagrams. However, these upper-temperature branches are experimentally inaccessible. Pressure effects are particularly interesting. For a low-MW CP, experimental data display a tendency toward a reentrant T−p locus, which supports the conjecture that these systems are inherently of the closed-loop type. In the cases of PNIPAAMs and high-MW CPs, the T−p isopleths show extrema. The copolymer aqueous solutions under study in this work model a single chemical system where pressure−hypercritical behavior evolves to a temperature−hypercritical one as the chain length decreases.

UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-0037176942&partnerID=MN8TOARS

UR - https://pubs.acs.org/doi/10.1021/ma011533a

U2 - 10.1021/ma011533a

DO - 10.1021/ma011533a

M3 - Article

SN - 0024-9297

VL - 35

SP - 1887

EP - 1895

JO - Macromolecules

JF - Macromolecules

IS - 5

ER -