TY - JOUR
T1 - Effects of the antioxidants dihydrolipoic acid (DHLA) and probucol on xenobiotic-mediated methaemoglobin formation in diabetic and non-diabetic human erythrocytes in vitro
AU - Coleman, Michael D.
AU - Baker, Claire D.
PY - 2001/4/17
Y1 - 2001/4/17
N2 - The antioxidant effects of dihydrolipoic acid (DHLA) and probucol were investigated in a human erythrocytic in-vitro model of diabetic oxidative stress, where xenobiotics were used to form methaemoglobin. 4-Aminophenol mediated haemoglobin oxidation in non-diabetic erythrocytes was not affected by the presence of either DHLA or probucol. However, with diabetic cells, there were significant increases (P < 0.01) in 4-aminophenol-mediated haemoglobin oxidation in the presence of DHLA. Methaemoglobin formed by nitrite in non-diabetic and diabetic cells was not altered by either DHLA or probucol except at one time point in diabetic cells. In non-diabetic as well as diabetic cells, methaemoglobin formed by MADDS-NHOH was significantly reduced at all three time points in the presence of DHLA (P < 0.0001) but unaffected by probucol. In the presence of DHLA only, methaemoglobin formed by the products of rat microsomal oxidation of both 4-aminopropiophenone and benzocaine was markedly reduced for both xenobiotics in diabetic and non-diabetic cells (P < 0.0001) compared with cells incubated in the absence of DHLA. There were no significant differences between total cellular thiol levels determined between diabetic and non-diabetic erythrocytes, nor did DHLA or probucol affect resting thiol levels. MADDS-NHOH caused a significant thiol depletion in diabetic cells, which was restored in the presence of DHLA. A further study is required to determine how DHLA attenuates the potent REDOX reactions that occur during hydroxylamine-mediated methaemoglobin formation. © 2001 Elsevier Science B.V.
AB - The antioxidant effects of dihydrolipoic acid (DHLA) and probucol were investigated in a human erythrocytic in-vitro model of diabetic oxidative stress, where xenobiotics were used to form methaemoglobin. 4-Aminophenol mediated haemoglobin oxidation in non-diabetic erythrocytes was not affected by the presence of either DHLA or probucol. However, with diabetic cells, there were significant increases (P < 0.01) in 4-aminophenol-mediated haemoglobin oxidation in the presence of DHLA. Methaemoglobin formed by nitrite in non-diabetic and diabetic cells was not altered by either DHLA or probucol except at one time point in diabetic cells. In non-diabetic as well as diabetic cells, methaemoglobin formed by MADDS-NHOH was significantly reduced at all three time points in the presence of DHLA (P < 0.0001) but unaffected by probucol. In the presence of DHLA only, methaemoglobin formed by the products of rat microsomal oxidation of both 4-aminopropiophenone and benzocaine was markedly reduced for both xenobiotics in diabetic and non-diabetic cells (P < 0.0001) compared with cells incubated in the absence of DHLA. There were no significant differences between total cellular thiol levels determined between diabetic and non-diabetic erythrocytes, nor did DHLA or probucol affect resting thiol levels. MADDS-NHOH caused a significant thiol depletion in diabetic cells, which was restored in the presence of DHLA. A further study is required to determine how DHLA attenuates the potent REDOX reactions that occur during hydroxylamine-mediated methaemoglobin formation. © 2001 Elsevier Science B.V.
KW - antioxidants
KW - diabetic and non-diabetic human erythrocytes
KW - dihydrolipoic acid
KW - methaemoglobin formation
KW - probucol
KW - xenobiotic
UR - http://www.scopus.com/inward/record.url?scp=0035072966&partnerID=8YFLogxK
UR - https://www.sciencedirect.com/science/article/pii/S1382668901000618?via%3Dihub
U2 - 10.1016/S1382-6689(01)00061-8
DO - 10.1016/S1382-6689(01)00061-8
M3 - Article
SN - 1382-6689
VL - 9
SP - 161
EP - 167
JO - Environmental Toxicology and Pharmacology
JF - Environmental Toxicology and Pharmacology
IS - 4
ER -