Electrical brain stimulation induces dendritic stripping but improves survival of silent neurons after optic nerve damage

Petra Henrich-Noack*, Elena G. Sergeeva, Torben Eber, Qing You, Nadine Voigt, Jürgen Köhler, Sebastian Wagner, Stefanie Lazik, Christian Mawrin, Guihua Xu, Sayantan Biswas, Bernhard A. Sabel, Christopher K.S. Leung

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Repetitive transorbital alternating current stimulation (rtACS) improves vision in patients with chronic visual impairments and an acute treatment increased survival of retinal neurons after optic nerve crush (ONC) in rodent models of visual system injury. However, despite this protection no functional recovery could be detected in rats, which was interpreted as evidence of "silent survivor" cells. We now analysed the mechanisms underlying this "silent survival" effect. Using in vivo microscopy of the retina we investigated the survival and morphology of fluorescent neurons before and after ONC in animals receiving rtACS or sham treatment. One week after the crush, more neurons survived in the rtACS-treated group compared to sham-treated controls. In vivo imaging further revealed that in the initial post-ONC period, rtACS induced dendritic pruning in surviving neurons. In contrast, dendrites in untreated retinae degenerated slowly after the axonal trauma and neurons died. The complete loss of visual evoked potentials supports the hypothesis that cell signalling is abolished in the surviving neurons. Despite this evidence of "silencing", intracellular free calcium imaging showed that the cells were still viable. We propose that early after trauma, complete dendritic stripping following rtACS protects neurons from excitotoxic cell death by silencing them.

Original languageEnglish
Article number627
Number of pages13
JournalScientific Reports
Volume7
Issue number1
Early online date4 Apr 2017
DOIs
Publication statusE-pub ahead of print - 4 Apr 2017

Bibliographical note

© 2017 The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License http://creativecommons.org/licenses/by/4.0/., which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Keywords

  • cell death in the nervous sytem
  • cellular neuroscience
  • fluorescence imaging
  • neurodegeneration
  • retina

Fingerprint

Dive into the research topics of 'Electrical brain stimulation induces dendritic stripping but improves survival of silent neurons after optic nerve damage'. Together they form a unique fingerprint.

Cite this