Abstract
The concept of soft state (i.e., the state that will expire unless been refreshed) has been widely used in the design of network signaling protocols. The approaches of refreshing state in multi-hop networks can be classified to end-to-end (E2E) and hop-by-hop (HbH) refreshes. In this article we propose an effective Markov chain based analytical model for both E2E and HbH refresh approaches. Simulations verify the analytical models, which can be used to study the impacts of link characteristics on the performance (e.g., state synchronization and message overhead), as a guide on configuration and optimization of soft state signaling protocols.
Original language | English |
---|---|
Pages (from-to) | 268-270 |
Number of pages | 3 |
Journal | IEEE Communications Letters |
Volume | 13 |
Issue number | 4 |
DOIs | |
Publication status | Published - Apr 2009 |
Bibliographical note
© 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Keywords
- signaling protocol
- soft state
- Markov chain