Estimating ECAP threshold from the variability of the response

Stephen Holmes, David Landsberger, Robert Morse

Research output: Unpublished contribution to conferencePoster

Abstract

Electrical compound action potentials (ECAPs) of the cochlear nerve are used clinically for quick and efficient cochlear implant parameter setting. The ECAP is the aggregate response of nerve fibres at various distances from the recording electrode, and the magnitude of the ECAP is therefore related to the number of fibres excited by a particular stimulus. Current methods, such as the masker-probe or alternating polarity methods, use the ECAP magnitude at various stimulus levels to estimate the neural threshold, from which the parameters are calculated. However, the correlation between ECAP threshold and perceptual threshold is not always good, with ECAP threshold typically being much higher than perceptual threshold. The lower correlation is partly due to the very different pulse rates used for ECAPs (below 100 Hz) and clinical programs (hundreds of Hz up to several kHz). Here we introduce a new method of estimating ECAP threshold for cochlear implants based upon the variability of the response. At neural threshold, where some but not all fibers respond, there is a different response each trial. This inter-trial variability can be detected overlaying the constant variability of the system noise. The large stimulus artefact, which requires additional trials for artefact rejection in the standard ECAP magnitude methods, is not consequential, as it has little variability. The variability method therefore consists of simply presenting a pulse and recording the ECAP, and as such is quicker than other methods. It also has the potential to be run at high rates like clinical programs, potentially improving the correlation with behavioural threshold. Preliminary data is presented that shows a detectable variability increase shortly after probe offset, at probe levels much lower than those producing a detectable ECAP magnitude. Care must be taken, however, to avoid saturation of the recording amplifier saturation; in our experiments we found a gain of 300 to be optimal.
Original languageEnglish
Publication statusPublished - Feb 2010
Event33rd ARO Midwinter Meeting - Los Angeles, United States
Duration: 6 Feb 201010 Feb 2010

Conference

Conference33rd ARO Midwinter Meeting
Country/TerritoryUnited States
CityLos Angeles
Period6/02/1010/02/10

Fingerprint

Dive into the research topics of 'Estimating ECAP threshold from the variability of the response'. Together they form a unique fingerprint.

Cite this