Estimation of computer waste quantities using forecasting techniques

Nikolaos Petridis, Emmanouil Stiakakis, Konstantinos Petridis, Prasanta Dey*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Technology changes rapidly over years providing continuously more options for computer alternatives and making life easier for economic, intra-relation or any other transactions. However, the introduction of new technology “pushes” old Information and Communication Technology (ICT) products to non-use. E-waste is defined as the quantities of ICT products which are not in use and is bivariate function of the sold quantities, and the probability that specific computers quantity will be regarded as obsolete. In this paper, an e-waste generation model is presented, which is applied to the following regions: Western and Eastern Europe, Asia/Pacific, Japan/Australia/New Zealand, North and South America. Furthermore, cumulative computer sales were retrieved for selected countries of the regions so as to compute obsolete computer quantities. In order to provide robust results for the forecasted quantities, a selection of forecasting models, namely (i) Bass, (ii) Gompertz, (iii) Logistic, (iv) Trend model, (v) Level model, (vi) AutoRegressive Moving Average (ARMA), and (vii) Exponential Smoothing were applied, depicting for each country that model which would provide better results in terms of minimum error indices (Mean Absolute Error and Mean Square Error) for the in-sample estimation. As new technology does not diffuse in all the regions of the world with the same speed due to different socio-economic factors, the lifespan distribution, which provides the probability of a certain quantity of computers to be considered as obsolete, is not adequately modeled in the literature. The time horizon for the forecasted quantities is 2014-2030, while the results show a very sharp increase in the USA and United Kingdom, due to the fact of decreasing computer lifespan and increasing sales.
Original languageEnglish
Pages (from-to)3072-3085
Number of pages14
JournalJournal of Cleaner Production
Volume112
Early online date22 Oct 2015
DOIs
Publication statusPublished - 20 Jan 2016

Bibliographical note

© 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

Keywords

  • e-waste generation
  • lifespan
  • forecasting
  • distribution fitting

Fingerprint

Dive into the research topics of 'Estimation of computer waste quantities using forecasting techniques'. Together they form a unique fingerprint.

Cite this