Evaluation of intravoxel incoherent motion fitting methods in low-perfused tissue

E.M. Meeus, J. Novak, S.B. Withey, N. Zarinabad, H. Dehghani, A.C. Peet

Research output: Contribution to journalArticlepeer-review

Abstract

Purpose To investigate the robustness of constrained and simultaneous intravoxel incoherent motion (IVIM) fitting methods and the estimated IVIM parameters (D, D* and f) for applications in brain and low‐perfused tissues. Materials and Methods Model data simulations relevant to brain and low‐perfused tumor tissues were computed to assess the accuracy, relative bias, and reproducibility (CV%) of the fitting methods in estimating the IVIM parameters. The simulations were performed at a series of signal‐to‐noise ratio (SNR) levels to assess the influence of noise on the fitting. Results The estimated IVIM parameters from model simulations were found significantly different (P < 0.05) using simultaneous and constrained fitting methods at low SNR. Higher accuracy and reproducibility were achieved with the constrained fitting method. Using this method, the mean error (%) for the estimated IVIM parameters at a clinically relevant SNR = 40 were D 0.35, D* 41.0 and f 4.55 for the tumor model and D 1.87, D* 2.48, and f 7.49 for the gray matter model. The most robust parameters were the IVIM‐D and IVIM‐f. The IVIM‐D* was increasingly overestimated at low perfusion. Conclusion A constrained IVIM fitting method provides more accurate and reproducible IVIM parameters in low‐perfused tissue compared with simultaneous fitting. Level of Evidence: 3
Original languageEnglish
Pages (from-to)1325-1334
JournalJournal of Magnetic Resonance Imaging
Volume45
Issue number5
Early online date22 Aug 2016
DOIs
Publication statusPublished - May 2017

Bibliographical note

© 2016 The Authors Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Fingerprint Dive into the research topics of 'Evaluation of intravoxel incoherent motion fitting methods in low-perfused tissue'. Together they form a unique fingerprint.

Cite this