Experimental and theoretical study of a piezoelectric vibration energy harvester under high temperature

Emmanuelle Arroyo, Yu Jia, Sijun Du, Shao-Tuan Chen, Ashwin A Seshia

Research output: Contribution to journalArticlepeer-review


This paper focuses on studying the effect of increasing the ambient temperature up to 160 °C on the power harvested by an MEMS piezoelectric micro-cantilever manufactured using an aluminum nitride-on-silicon fabrication process. An experimental study shows that the peak output power decreases by 60% to 70% depending on the input acceleration. A theoretical study establishes the relationship of all important parameters with temperature and includes them into a temperature-dependent model. This model shows that around 50% of the power drop can be explained by a decreasing quality factor, and that thermal stresses account for around 30% of this decrease.
Original languageEnglish
Pages (from-to)1216-1225
JournalJournal of Microelectromechanical Systems
Issue number6
Early online date31 Jul 2017
Publication statusPublished - 1 Aug 2017

Bibliographical note

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.


Dive into the research topics of 'Experimental and theoretical study of a piezoelectric vibration energy harvester under high temperature'. Together they form a unique fingerprint.

Cite this