TY - JOUR
T1 - Factors preventing myopia progression with orthokeratology correction
AU - Santodomingo-Rubido, Jacinto
AU - Villa-Collar, César
AU - Gilmartin, Bernard
AU - Gutiérrez-Ortega, Ramón
PY - 2013/11
Y1 - 2013/11
N2 - PURPOSE: To examine which baseline measurements constitute predictive factors for axial length growth over 2 years in children wearing orthokeratology contact lenses (OK) and single-vision spectacles (SV). METHODS: Sixty-one children were prospectively assigned to wear either OK (n = 31) or SV (n = 30) for 2 years. The primary outcome measure (dependent variable) was axial length change at 2 years relative to baseline. Other measurements (independent variables) were age, age of myopia onset, gender, myopia progression 2 years before baseline and baseline myopia, anterior chamber depth, corneal power and shape (p value), and iris and pupil diameters as well as parental refraction. The contribution of all independent variables to the 2-year change in axial length was assessed using univariate and multivariate regression analyses. RESULTS: After univariate analyses, smaller increases in axial length were found in the OK group compared to the SV group in children who were older, had earlier onset of myopia, were female, had lower rate of myopia progression before baseline, had less myopia at baseline, had longer anterior chamber depth, had greater corneal power, had more prolate corneal shape, had larger iris diameter, had larger pupil sizes, and had lower levels of parental myopia (all p < 0.05). In multivariate analyses, older age and greater corneal power were associated with smaller increases in axial length in the OK group (both p < 0.05), whereas in SV wearers, smaller iris diameter was associated with smaller increases in axial length (p = 0.021). CONCLUSIONS: Orthokeratology is a successful treatment option in controlling axial elongation compared to SV in children of older age, had earlier onset of myopia, were female, had lower rate of myopia progression before baseline, had lower myopia at baseline, had longer anterior chamber depth, had greater corneal power, had more prolate corneal shape, had larger iris and pupil diameters, and had lower levels of parental myopia.
AB - PURPOSE: To examine which baseline measurements constitute predictive factors for axial length growth over 2 years in children wearing orthokeratology contact lenses (OK) and single-vision spectacles (SV). METHODS: Sixty-one children were prospectively assigned to wear either OK (n = 31) or SV (n = 30) for 2 years. The primary outcome measure (dependent variable) was axial length change at 2 years relative to baseline. Other measurements (independent variables) were age, age of myopia onset, gender, myopia progression 2 years before baseline and baseline myopia, anterior chamber depth, corneal power and shape (p value), and iris and pupil diameters as well as parental refraction. The contribution of all independent variables to the 2-year change in axial length was assessed using univariate and multivariate regression analyses. RESULTS: After univariate analyses, smaller increases in axial length were found in the OK group compared to the SV group in children who were older, had earlier onset of myopia, were female, had lower rate of myopia progression before baseline, had less myopia at baseline, had longer anterior chamber depth, had greater corneal power, had more prolate corneal shape, had larger iris diameter, had larger pupil sizes, and had lower levels of parental myopia (all p < 0.05). In multivariate analyses, older age and greater corneal power were associated with smaller increases in axial length in the OK group (both p < 0.05), whereas in SV wearers, smaller iris diameter was associated with smaller increases in axial length (p = 0.021). CONCLUSIONS: Orthokeratology is a successful treatment option in controlling axial elongation compared to SV in children of older age, had earlier onset of myopia, were female, had lower rate of myopia progression before baseline, had lower myopia at baseline, had longer anterior chamber depth, had greater corneal power, had more prolate corneal shape, had larger iris and pupil diameters, and had lower levels of parental myopia.
KW - axial length
KW - eye elongation
KW - myopia control
KW - myopia progression
KW - myopigenic factors
KW - orthokeratology
UR - http://www.scopus.com/inward/record.url?scp=84887408200&partnerID=8YFLogxK
UR - http://journals.lww.com/optvissci/Abstract/2013/11000/Factors_Preventing_Myopia_Progression_with.12.aspx
U2 - 10.1097/OPX.0000000000000034
DO - 10.1097/OPX.0000000000000034
M3 - Article
C2 - 24037063
AN - SCOPUS:84887408200
SN - 1040-5488
VL - 90
SP - 1225
EP - 1236
JO - Optometry and Vision Science
JF - Optometry and Vision Science
IS - 11
ER -