Abstract
Ineffective traffic signal control is one of the major causes of congestion in urban road networks. Dynamically changing traffic conditions and live traffic state estimation are fundamental challenges that limit the ability of the existing signal infrastructure in rendering individualized signal control in real-time. We use deep reinforcement learning (DRL) to address these challenges. Due to economic and safety constraints associated training such agents in the real world, a practical approach is to do so in simulation before deployment. Domain randomisation is an effective technique for bridging the reality gap and ensuring effective transfer of simulation-trained agents to the real world. In this paper, we develop a fully-autonomous, vision-based DRL agent that achieve adaptive signal control in the face of complex, imprecise, and dynamic traffic environments. Our agent uses live visual data (i.e. a stream of real-time RGB footage) from an intersection to extensively perceive and subsequently act upon the traffic environment. Employing domain randomisation, we examine our agent’s generalisation capabilities under varying traffic conditions in both the simulation and the real-world environments. In a diverse validation set independent of training data, our traffic control agent reliably adapted to novel traffic situations and demonstrated a positive transfer to previously unseen real intersections despite being trained entirely in simulation.
Original language | English |
---|---|
Title of host publication | Proceedings of the 21st International Conference on Autonomous Agents and Multi-agent Systems (AAMAS 2022) |
Publisher | ACM |
Pages | 454-462 |
Number of pages | 9 |
ISBN (Electronic) | 9781713854333 |
Publication status | Published - 9 May 2022 |
Event | 21st International Conference on Autonomous Agents and Multiagent Systems - Auckland, New Zealand Duration: 9 May 2022 → 13 May 2022 https://aamas2022-conference.auckland.ac.nz/ |
Publication series
Name | Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS |
---|---|
Volume | 1 |
ISSN (Print) | 1548-8403 |
ISSN (Electronic) | 1558-2914 |
Conference
Conference | 21st International Conference on Autonomous Agents and Multiagent Systems |
---|---|
Abbreviated title | AAMAS 2022 |
Country/Territory | New Zealand |
City | Auckland |
Period | 9/05/22 → 13/05/22 |
Internet address |
Bibliographical note
(c) 2022, International Foundation for Autonomous Agents andMultiagent Systems (www.ifaamas.org). All rights reserved.
Keywords
- Intelligent Transportation Systems
- Autonomous Signal Control
- Deep Reinforcement Learning