Function interval arithmetic

Jan Duracz, Amin Farjudian, Michal Konečný, Walid Taha

Research output: Chapter in Book/Published conference outputConference publication

Abstract

We propose an arithmetic of function intervals as a basis for convenient rigorous numerical computation. Function intervals can be used as mathematical objects in their own right or as enclosures of functions over the reals. We present two areas of application of function interval arithmetic and associated software that implements the arithmetic: (1) Validated ordinary differential equation solving using the AERN library and within the Acumen hybrid system modeling tool. (2) Numerical theorem proving using the PolyPaver prover.

Original languageEnglish
Title of host publicationMathematical software – ICMS 2014
Subtitle of host publication4th international congress, Seoul, South Korea, August 5-9, 2014, proceedings
EditorsHoon Hong, Chee Yap
Place of PublicationBerlin (DE)
PublisherSpringer
Pages677-684
Number of pages8
ISBN (Electronic)978-3-662-44199-2
ISBN (Print)978-3-662-44198-5
DOIs
Publication statusPublished - 31 Dec 2014
Event4th International Congress on Mathematical Software - Seoul, Korea, Democratic People's Republic of
Duration: 5 Aug 20149 Aug 2014

Publication series

NameLecture Notes in Computer Science
PublisherSpringer
Volume8592
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Congress

Congress4th International Congress on Mathematical Software
Abbreviated titleICMS 2014
Country/TerritoryKorea, Democratic People's Republic of
CitySeoul
Period5/08/149/08/14

Bibliographical note

Funding: EPSRC (EP/C01037X/1)

Keywords

  • ODEs
  • theorem proving
  • validated numeric computation

Fingerprint

Dive into the research topics of 'Function interval arithmetic'. Together they form a unique fingerprint.

Cite this