g-C3N4/ NiAl-LDH 2D/2D Hybrid Heterojunction for High-Performance Photocatalytic Reduction of CO2 into Renewable Fuels

Surendar Tonda, Santosh Kumar, Monika Bhardwaj, Poonam Yadav, Satishchandra Ogale

Research output: Contribution to journalArticlepeer-review

Abstract

2D/2D interface heterostructures of g-C3N4 and NiAl-LDH are synthesized utilizing strong electrostatic interactions between positively charged 2D NiAl-LDH sheets and negatively charged 2D g-C3N4 nanosheets. This new 2D/2D interface heterojunction showed remarkable performance for photocatalytic CO2 reduction to produce renewable fuels such as CO and H2 under visible-light irradiation, far superior to that of either single phase g-C3N4 or NiAl-LDH nanosheets. The enhancement of photocatalytic activity could be attributed mainly to the excellent interfacial contact at the heterojunction of g-C3N4/NiAl-LDH, which subsequently results in suppressed recombination, and improved transfer and separation of photogenerated charge carriers. In addition, the optimal g-C3N4/NiAl-LDH nanocomposite possessed high photostability after successive experimental runs with no obvious change in the production of CO from CO2 reduction. Our findings regarding the design, fabrication and photophysical properties of 2D/2D heterostructure systems may find use in other photocatalytic applications including H2 production and water purification.
Original languageEnglish
Pages (from-to)2667–2678
Number of pages12
JournalACS Applied Materials and Interfaces
Volume10
Issue number3
Early online date11 Jan 2018
DOIs
Publication statusPublished - 24 Jan 2018

Bibliographical note

This document is the Accepted Manuscript version of a Published Work that appeared in final form in [Applied Materials & Interfaces], copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see [http://doi.org/10.1021/acsami.7b18835].

Funding:DST Nanomission Thematic Unit program “Nanoscience for Clean Energy

Keywords

  • layered double hydroxide
  • g-C3N4
  • CO2 reduction
  • nanocomposite
  • photocatalysis

Fingerprint

Dive into the research topics of 'g-C3N4/ NiAl-LDH 2D/2D Hybrid Heterojunction for High-Performance Photocatalytic Reduction of CO2 into Renewable Fuels'. Together they form a unique fingerprint.

Cite this