GEO Label Web Services for Dynamic and Effective Communication of Geospatial Metadata Quality

Lucy Bastin, Victoria Lush, Daniel Nust, Joan Masó, Joanna M Lumsden

Research output: Contribution to conferenceAbstract

Abstract

We present demonstrations of the GEO label Web services and their integration into a prototype extension of the GEOSS portal (http://scgeoviqua.sapienzaconsulting.com/web/guest/geo_home), the GMU portal (http://gis.csiss.gmu.edu/GADMFS/) and a GeoNetwork catalog application (http://uncertdata.aston.ac.uk:8080/geonetwork/srv/eng/main.home). The GEO label is designed to communicate, and facilitate interrogation of, geospatial quality information with a view to supporting efficient and effective dataset selection on the basis of quality, trustworthiness and fitness for use. The GEO label which we propose was developed and evaluated according to a user-centred design (UCD) approach in order to maximise the likelihood of user acceptance once deployed. The resulting label is dynamically generated from producer metadata in ISO or FDGC format, and incorporates user feedback on dataset usage, ratings and discovered issues, in order to supply a highly informative summary of metadata completeness and quality. The label was easily incorporated into a community portal as part of the GEO Architecture Implementation Programme (AIP-6) and has been successfully integrated into a prototype extension of the GEOSS portal, as well as the popular metadata catalog and editor, GeoNetwork. The design of the GEO label was based on 4 user studies conducted to: (1) elicit initial user requirements; (2) investigate initial user views on the concept of a GEO label and its potential role; (3) evaluate prototype label visualizations; and (4) evaluate and validate physical GEO label prototypes. The results of these studies indicated that users and producers support the concept of a label with drill-down interrogation facility, combining eight geospatial data informational aspects, namely: producer profile, producer comments, lineage information, standards compliance, quality information, user feedback, expert reviews, and citations information. These are delivered as eight facets of a wheel-like label, which are coloured according to metadata availability and are clickable to allow a user to engage with the original metadata and explore specific aspects in more detail. To support this graphical representation and allow for wider deployment architectures we have implemented two Web services, a PHP and a Java implementation, that generate GEO label representations by combining producer metadata (from standard catalogues or other published locations) with structured user feedback. Both services accept encoded URLs of publicly available metadata documents or metadata XML files as HTTP POST and GET requests and apply XPath and XSLT mappings to transform producer and feedback XML documents into clickable SVG GEO label representations. The label and services are underpinned by two XML-based quality models. The first is a producer model that extends ISO 19115 and 19157 to allow fuller citation of reference data, presentation of pixel- and dataset- level statistical quality information, and encoding of 'traceability' information on the lineage of an actual quality assessment. The second is a user quality model (realised as a feedback server and client) which allows reporting and query of ratings, usage reports, citations, comments and other domain knowledge. Both services are Open Source and are available on GitHub at https://github.com/lushv/geolabel-service and https://github.com/52North/GEO-label-java. The functionality of these services can be tested using our GEO label generation demos, available online at http://www.geolabel.net/demo.html and http://geoviqua.dev.52north.org/glbservice/index.jsf.
Original languageEnglish
Publication statusPublished - 2014
EventEGU General Assembly 2014, held 27 April - 2 May, 2014 in Vienna, Austria, id.14453: EGU General Assembly 2014 - Vienna, Vienna, Austria
Duration: 27 Apr 20142 May 2014
Conference number: id.14453
http://adsabs.harvard.edu/abs/2014EGUGA..1614453L

Conference

ConferenceEGU General Assembly 2014, held 27 April - 2 May, 2014 in Vienna, Austria, id.14453
Abbreviated titleEGU General Assembly 2014
CountryAustria
CityVienna
Period27/04/142/05/14
Internet address

Fingerprint

Metadata
Web services
Labels
Communication
Feedback
XML
HTTP
World Wide Web
Websites
Wheels

Bibliographical note

© Author(s) 2014. CC Attribution 3.0 License

Cite this

Bastin, L., Lush, V., Nust, D., Masó, J., & Lumsden, J. M. (2014). GEO Label Web Services for Dynamic and Effective Communication of Geospatial Metadata Quality. Abstract from EGU General Assembly 2014, held 27 April - 2 May, 2014 in Vienna, Austria, id.14453, Vienna, Austria.
Bastin, Lucy ; Lush, Victoria ; Nust, Daniel ; Masó, Joan ; Lumsden, Joanna M. / GEO Label Web Services for Dynamic and Effective Communication of Geospatial Metadata Quality. Abstract from EGU General Assembly 2014, held 27 April - 2 May, 2014 in Vienna, Austria, id.14453, Vienna, Austria.
@conference{c4964e99d363484cb148316073c0dde4,
title = "GEO Label Web Services for Dynamic and Effective Communication of Geospatial Metadata Quality",
abstract = "We present demonstrations of the GEO label Web services and their integration into a prototype extension of the GEOSS portal (http://scgeoviqua.sapienzaconsulting.com/web/guest/geo_home), the GMU portal (http://gis.csiss.gmu.edu/GADMFS/) and a GeoNetwork catalog application (http://uncertdata.aston.ac.uk:8080/geonetwork/srv/eng/main.home). The GEO label is designed to communicate, and facilitate interrogation of, geospatial quality information with a view to supporting efficient and effective dataset selection on the basis of quality, trustworthiness and fitness for use. The GEO label which we propose was developed and evaluated according to a user-centred design (UCD) approach in order to maximise the likelihood of user acceptance once deployed. The resulting label is dynamically generated from producer metadata in ISO or FDGC format, and incorporates user feedback on dataset usage, ratings and discovered issues, in order to supply a highly informative summary of metadata completeness and quality. The label was easily incorporated into a community portal as part of the GEO Architecture Implementation Programme (AIP-6) and has been successfully integrated into a prototype extension of the GEOSS portal, as well as the popular metadata catalog and editor, GeoNetwork. The design of the GEO label was based on 4 user studies conducted to: (1) elicit initial user requirements; (2) investigate initial user views on the concept of a GEO label and its potential role; (3) evaluate prototype label visualizations; and (4) evaluate and validate physical GEO label prototypes. The results of these studies indicated that users and producers support the concept of a label with drill-down interrogation facility, combining eight geospatial data informational aspects, namely: producer profile, producer comments, lineage information, standards compliance, quality information, user feedback, expert reviews, and citations information. These are delivered as eight facets of a wheel-like label, which are coloured according to metadata availability and are clickable to allow a user to engage with the original metadata and explore specific aspects in more detail. To support this graphical representation and allow for wider deployment architectures we have implemented two Web services, a PHP and a Java implementation, that generate GEO label representations by combining producer metadata (from standard catalogues or other published locations) with structured user feedback. Both services accept encoded URLs of publicly available metadata documents or metadata XML files as HTTP POST and GET requests and apply XPath and XSLT mappings to transform producer and feedback XML documents into clickable SVG GEO label representations. The label and services are underpinned by two XML-based quality models. The first is a producer model that extends ISO 19115 and 19157 to allow fuller citation of reference data, presentation of pixel- and dataset- level statistical quality information, and encoding of 'traceability' information on the lineage of an actual quality assessment. The second is a user quality model (realised as a feedback server and client) which allows reporting and query of ratings, usage reports, citations, comments and other domain knowledge. Both services are Open Source and are available on GitHub at https://github.com/lushv/geolabel-service and https://github.com/52North/GEO-label-java. The functionality of these services can be tested using our GEO label generation demos, available online at http://www.geolabel.net/demo.html and http://geoviqua.dev.52north.org/glbservice/index.jsf.",
author = "Lucy Bastin and Victoria Lush and Daniel Nust and Joan Mas{\'o} and Lumsden, {Joanna M}",
note = "{\circledC} Author(s) 2014. CC Attribution 3.0 License; EGU General Assembly 2014, held 27 April - 2 May, 2014 in Vienna, Austria, id.14453 : EGU General Assembly 2014, EGU General Assembly 2014 ; Conference date: 27-04-2014 Through 02-05-2014",
year = "2014",
language = "English",
url = "http://adsabs.harvard.edu/abs/2014EGUGA..1614453L",

}

Bastin, L, Lush, V, Nust, D, Masó, J & Lumsden, JM 2014, 'GEO Label Web Services for Dynamic and Effective Communication of Geospatial Metadata Quality' EGU General Assembly 2014, held 27 April - 2 May, 2014 in Vienna, Austria, id.14453, Vienna, Austria, 27/04/14 - 2/05/14, .

GEO Label Web Services for Dynamic and Effective Communication of Geospatial Metadata Quality. / Bastin, Lucy; Lush, Victoria; Nust, Daniel; Masó, Joan; Lumsden, Joanna M.

2014. Abstract from EGU General Assembly 2014, held 27 April - 2 May, 2014 in Vienna, Austria, id.14453, Vienna, Austria.

Research output: Contribution to conferenceAbstract

TY - CONF

T1 - GEO Label Web Services for Dynamic and Effective Communication of Geospatial Metadata Quality

AU - Bastin, Lucy

AU - Lush, Victoria

AU - Nust, Daniel

AU - Masó, Joan

AU - Lumsden, Joanna M

N1 - © Author(s) 2014. CC Attribution 3.0 License

PY - 2014

Y1 - 2014

N2 - We present demonstrations of the GEO label Web services and their integration into a prototype extension of the GEOSS portal (http://scgeoviqua.sapienzaconsulting.com/web/guest/geo_home), the GMU portal (http://gis.csiss.gmu.edu/GADMFS/) and a GeoNetwork catalog application (http://uncertdata.aston.ac.uk:8080/geonetwork/srv/eng/main.home). The GEO label is designed to communicate, and facilitate interrogation of, geospatial quality information with a view to supporting efficient and effective dataset selection on the basis of quality, trustworthiness and fitness for use. The GEO label which we propose was developed and evaluated according to a user-centred design (UCD) approach in order to maximise the likelihood of user acceptance once deployed. The resulting label is dynamically generated from producer metadata in ISO or FDGC format, and incorporates user feedback on dataset usage, ratings and discovered issues, in order to supply a highly informative summary of metadata completeness and quality. The label was easily incorporated into a community portal as part of the GEO Architecture Implementation Programme (AIP-6) and has been successfully integrated into a prototype extension of the GEOSS portal, as well as the popular metadata catalog and editor, GeoNetwork. The design of the GEO label was based on 4 user studies conducted to: (1) elicit initial user requirements; (2) investigate initial user views on the concept of a GEO label and its potential role; (3) evaluate prototype label visualizations; and (4) evaluate and validate physical GEO label prototypes. The results of these studies indicated that users and producers support the concept of a label with drill-down interrogation facility, combining eight geospatial data informational aspects, namely: producer profile, producer comments, lineage information, standards compliance, quality information, user feedback, expert reviews, and citations information. These are delivered as eight facets of a wheel-like label, which are coloured according to metadata availability and are clickable to allow a user to engage with the original metadata and explore specific aspects in more detail. To support this graphical representation and allow for wider deployment architectures we have implemented two Web services, a PHP and a Java implementation, that generate GEO label representations by combining producer metadata (from standard catalogues or other published locations) with structured user feedback. Both services accept encoded URLs of publicly available metadata documents or metadata XML files as HTTP POST and GET requests and apply XPath and XSLT mappings to transform producer and feedback XML documents into clickable SVG GEO label representations. The label and services are underpinned by two XML-based quality models. The first is a producer model that extends ISO 19115 and 19157 to allow fuller citation of reference data, presentation of pixel- and dataset- level statistical quality information, and encoding of 'traceability' information on the lineage of an actual quality assessment. The second is a user quality model (realised as a feedback server and client) which allows reporting and query of ratings, usage reports, citations, comments and other domain knowledge. Both services are Open Source and are available on GitHub at https://github.com/lushv/geolabel-service and https://github.com/52North/GEO-label-java. The functionality of these services can be tested using our GEO label generation demos, available online at http://www.geolabel.net/demo.html and http://geoviqua.dev.52north.org/glbservice/index.jsf.

AB - We present demonstrations of the GEO label Web services and their integration into a prototype extension of the GEOSS portal (http://scgeoviqua.sapienzaconsulting.com/web/guest/geo_home), the GMU portal (http://gis.csiss.gmu.edu/GADMFS/) and a GeoNetwork catalog application (http://uncertdata.aston.ac.uk:8080/geonetwork/srv/eng/main.home). The GEO label is designed to communicate, and facilitate interrogation of, geospatial quality information with a view to supporting efficient and effective dataset selection on the basis of quality, trustworthiness and fitness for use. The GEO label which we propose was developed and evaluated according to a user-centred design (UCD) approach in order to maximise the likelihood of user acceptance once deployed. The resulting label is dynamically generated from producer metadata in ISO or FDGC format, and incorporates user feedback on dataset usage, ratings and discovered issues, in order to supply a highly informative summary of metadata completeness and quality. The label was easily incorporated into a community portal as part of the GEO Architecture Implementation Programme (AIP-6) and has been successfully integrated into a prototype extension of the GEOSS portal, as well as the popular metadata catalog and editor, GeoNetwork. The design of the GEO label was based on 4 user studies conducted to: (1) elicit initial user requirements; (2) investigate initial user views on the concept of a GEO label and its potential role; (3) evaluate prototype label visualizations; and (4) evaluate and validate physical GEO label prototypes. The results of these studies indicated that users and producers support the concept of a label with drill-down interrogation facility, combining eight geospatial data informational aspects, namely: producer profile, producer comments, lineage information, standards compliance, quality information, user feedback, expert reviews, and citations information. These are delivered as eight facets of a wheel-like label, which are coloured according to metadata availability and are clickable to allow a user to engage with the original metadata and explore specific aspects in more detail. To support this graphical representation and allow for wider deployment architectures we have implemented two Web services, a PHP and a Java implementation, that generate GEO label representations by combining producer metadata (from standard catalogues or other published locations) with structured user feedback. Both services accept encoded URLs of publicly available metadata documents or metadata XML files as HTTP POST and GET requests and apply XPath and XSLT mappings to transform producer and feedback XML documents into clickable SVG GEO label representations. The label and services are underpinned by two XML-based quality models. The first is a producer model that extends ISO 19115 and 19157 to allow fuller citation of reference data, presentation of pixel- and dataset- level statistical quality information, and encoding of 'traceability' information on the lineage of an actual quality assessment. The second is a user quality model (realised as a feedback server and client) which allows reporting and query of ratings, usage reports, citations, comments and other domain knowledge. Both services are Open Source and are available on GitHub at https://github.com/lushv/geolabel-service and https://github.com/52North/GEO-label-java. The functionality of these services can be tested using our GEO label generation demos, available online at http://www.geolabel.net/demo.html and http://geoviqua.dev.52north.org/glbservice/index.jsf.

M3 - Abstract

ER -

Bastin L, Lush V, Nust D, Masó J, Lumsden JM. GEO Label Web Services for Dynamic and Effective Communication of Geospatial Metadata Quality. 2014. Abstract from EGU General Assembly 2014, held 27 April - 2 May, 2014 in Vienna, Austria, id.14453, Vienna, Austria.