High frequency oscillations in epileptic and non-epileptic human hippocampus during a cognitive task

Martin Pail*, Jan Cimbálník, Robert Roman, Pavel Daniel, Daniel J. Shaw, Jan Chrastina, Milan Brázdil

*Corresponding author for this work

Research output: Contribution to journalArticle

Abstract

Hippocampal high-frequency electrographic activity (HFOs) represents one of the major discoveries not only in epilepsy research but also in cognitive science over the past few decades. A fundamental challenge, however, has been the fact that physiological HFOs associated with normal brain function overlap in frequency with pathological HFOs. We investigated the impact of a cognitive task on HFOs with the aim of improving differentiation between epileptic and non-epileptic hippocampi in humans. Hippocampal activity was recorded with depth electrodes in 15 patients with focal epilepsy during a resting period and subsequently during a cognitive task. HFOs in ripple and fast ripple frequency ranges were evaluated in both conditions, and their rate, spectral entropy, relative amplitude and duration were compared in epileptic and non-epileptic hippocampi. The similarity of HFOs properties recorded at rest in epileptic and non-epileptic hippocampi suggests that they cannot be used alone to distinguish between hippocampi. However, both ripples and fast ripples were observed with higher rates, higher relative amplitudes and longer durations at rest as well as during a cognitive task in epileptic compared with non-epileptic hippocampi. Moreover, during a cognitive task, significant reductions of HFOs rates were found in epileptic hippocampi. These reductions were not observed in non-epileptic hippocampi. Our results indicate that although both hippocampi generate HFOs with similar features that probably reflect non-pathological phenomena, it is possible to differentiate between epileptic and non-epileptic hippocampi using a simple odd-ball task.

Original languageEnglish
Article number18147
JournalScientific Reports
Volume10
Issue number1
DOIs
Publication statusPublished - 23 Oct 2020

Bibliographical note

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Fingerprint Dive into the research topics of 'High frequency oscillations in epileptic and non-epileptic human hippocampus during a cognitive task'. Together they form a unique fingerprint.

Cite this