Hydrogen sulphide rescues preeclampsia-like phenotype aggravated by high sFlt-1 in placenta growth factor (PlGF) deficiency

Shakil Ahmad, Keqing Wang, Stuart Egginton, Peter W. Hewett, Asif Ahmed

Research output: Contribution to journalMeeting abstract

Abstract

Placenta growth factor (PlGF) deficient mice are fertile at a Mendelian ratio. Interestingly, low maternal plasma levels of PlGF are strongly associated with early onset of preeclampsia, a pregnancy hypertensive disorder characterised by high blood pressure, proteinuria and fetal growth restriction. PlGF is increasingly being recognised as an early diagnostic biomarker, but the physiological importance of PlGF in the pathogenesis of preeclampsia is unknown. We investigated whether the decreased levels of PlGF in pregnancy exacerbate the fetal growth restriction associated with preeclampsia in the presence of high sFlt-1 and the potential of hydrogen sulphide to ameliorate these effects. Pregnant PlGF−/− mice were injected with adenovirus encoding sFlt-1 (Ad-sFlt-1) at 1 × 109 pfu/ml at E10.5 and mean arterial blood pressure (MAP), biochemical and histological analysis of maternal kidney, placenta and embryos were assessed at the end of pregnancy. Ad-sFlt-1 significantly increased MAP and induced severe glomerular endotheliosis in PlGF−/− mice compared to wild-type animals. Soluble Flt-1 also significantly elevated albumin–creatinine ratio and increased levels of urinary kidney injury molecule-1, a marker for proximal tubule injury. Furthermore, sFlt-1 over expression increased fetal resorption rate in the PlGF−/− mice and promoted abnormal placental vascularisation. To determine whether placental PlGF is critical for preventing fetal growth restriction associated with preeclampsia, we generated haploinsufficient PlGF+/− placentas and embryos in dams and exposed to high sFlt-1 environment. These mothers showed reduced fetal resorption, gestational hypertension and proteinuria when compared to pregnant PlGF−/− mice. Furthermore, treatment with hydrogen sulphide-releasing agent, GYY4137, significantly reduced resorption, hypertension and proteinuria observed in Ad-sFlt-1 treated pregnant PlGF−/− mice. Our study shows that placental PlGF is a critical protective factor against the damaging effects of high sFlt-1 associated with preeclampsia and activation of the hydrogen sulphide pathway may rescue preeclampsia phenotypes even under low PlGF environment.
LanguageEnglish
Article numberPP36
PagesS27-S28
Number of pages2
JournalNitric Oxide
Volume47
Issue numberSuppl.1
Early online date14 Apr 2015
DOIs
Publication statusPublished - 1 May 2015
Event3rd European Conference on the Biology of Hydrogen Sulfide - Athens, Greece
Duration: 3 May 20156 May 2015

Fingerprint

Hydrogen Sulfide
Pre-Eclampsia
Intercellular Signaling Peptides and Proteins
Phenotype
Blood pressure
Arterial Pressure
Fetal Resorption
Fetal Development
Proteinuria
Adenoviridae
Placenta Growth Factor
Pregnancy
Placenta
Embryonic Structures
Mothers
Hypertension
Kidney
Pregnancy Induced Hypertension
Wild Animals
Wounds and Injuries

Bibliographical note

Abstract from the 3rd European Conference on the Biology of Hydrogen Sulfide (H2S 2015), 3–6 May 2015, Athens, Greece.

Cite this

@article{0c0d1410ccf44edda27bd49bfb5a7a01,
title = "Hydrogen sulphide rescues preeclampsia-like phenotype aggravated by high sFlt-1 in placenta growth factor (PlGF) deficiency",
abstract = "Placenta growth factor (PlGF) deficient mice are fertile at a Mendelian ratio. Interestingly, low maternal plasma levels of PlGF are strongly associated with early onset of preeclampsia, a pregnancy hypertensive disorder characterised by high blood pressure, proteinuria and fetal growth restriction. PlGF is increasingly being recognised as an early diagnostic biomarker, but the physiological importance of PlGF in the pathogenesis of preeclampsia is unknown. We investigated whether the decreased levels of PlGF in pregnancy exacerbate the fetal growth restriction associated with preeclampsia in the presence of high sFlt-1 and the potential of hydrogen sulphide to ameliorate these effects. Pregnant PlGF−/− mice were injected with adenovirus encoding sFlt-1 (Ad-sFlt-1) at 1 × 109 pfu/ml at E10.5 and mean arterial blood pressure (MAP), biochemical and histological analysis of maternal kidney, placenta and embryos were assessed at the end of pregnancy. Ad-sFlt-1 significantly increased MAP and induced severe glomerular endotheliosis in PlGF−/− mice compared to wild-type animals. Soluble Flt-1 also significantly elevated albumin–creatinine ratio and increased levels of urinary kidney injury molecule-1, a marker for proximal tubule injury. Furthermore, sFlt-1 over expression increased fetal resorption rate in the PlGF−/− mice and promoted abnormal placental vascularisation. To determine whether placental PlGF is critical for preventing fetal growth restriction associated with preeclampsia, we generated haploinsufficient PlGF+/− placentas and embryos in dams and exposed to high sFlt-1 environment. These mothers showed reduced fetal resorption, gestational hypertension and proteinuria when compared to pregnant PlGF−/− mice. Furthermore, treatment with hydrogen sulphide-releasing agent, GYY4137, significantly reduced resorption, hypertension and proteinuria observed in Ad-sFlt-1 treated pregnant PlGF−/− mice. Our study shows that placental PlGF is a critical protective factor against the damaging effects of high sFlt-1 associated with preeclampsia and activation of the hydrogen sulphide pathway may rescue preeclampsia phenotypes even under low PlGF environment.",
author = "Shakil Ahmad and Keqing Wang and Stuart Egginton and Hewett, {Peter W.} and Asif Ahmed",
note = "Abstract from the 3rd European Conference on the Biology of Hydrogen Sulfide (H2S 2015), 3–6 May 2015, Athens, Greece.",
year = "2015",
month = "5",
day = "1",
doi = "10.1016/j.niox.2015.02.066",
language = "English",
volume = "47",
pages = "S27--S28",
journal = "Nitric Oxide",
issn = "1089-8603",
publisher = "Academic Press Inc.",
number = "Suppl.1",

}

Hydrogen sulphide rescues preeclampsia-like phenotype aggravated by high sFlt-1 in placenta growth factor (PlGF) deficiency. / Ahmad, Shakil; Wang, Keqing; Egginton, Stuart; Hewett, Peter W.; Ahmed, Asif.

In: Nitric Oxide, Vol. 47, No. Suppl.1, PP36, 01.05.2015, p. S27-S28.

Research output: Contribution to journalMeeting abstract

TY - JOUR

T1 - Hydrogen sulphide rescues preeclampsia-like phenotype aggravated by high sFlt-1 in placenta growth factor (PlGF) deficiency

AU - Ahmad, Shakil

AU - Wang, Keqing

AU - Egginton, Stuart

AU - Hewett, Peter W.

AU - Ahmed, Asif

N1 - Abstract from the 3rd European Conference on the Biology of Hydrogen Sulfide (H2S 2015), 3–6 May 2015, Athens, Greece.

PY - 2015/5/1

Y1 - 2015/5/1

N2 - Placenta growth factor (PlGF) deficient mice are fertile at a Mendelian ratio. Interestingly, low maternal plasma levels of PlGF are strongly associated with early onset of preeclampsia, a pregnancy hypertensive disorder characterised by high blood pressure, proteinuria and fetal growth restriction. PlGF is increasingly being recognised as an early diagnostic biomarker, but the physiological importance of PlGF in the pathogenesis of preeclampsia is unknown. We investigated whether the decreased levels of PlGF in pregnancy exacerbate the fetal growth restriction associated with preeclampsia in the presence of high sFlt-1 and the potential of hydrogen sulphide to ameliorate these effects. Pregnant PlGF−/− mice were injected with adenovirus encoding sFlt-1 (Ad-sFlt-1) at 1 × 109 pfu/ml at E10.5 and mean arterial blood pressure (MAP), biochemical and histological analysis of maternal kidney, placenta and embryos were assessed at the end of pregnancy. Ad-sFlt-1 significantly increased MAP and induced severe glomerular endotheliosis in PlGF−/− mice compared to wild-type animals. Soluble Flt-1 also significantly elevated albumin–creatinine ratio and increased levels of urinary kidney injury molecule-1, a marker for proximal tubule injury. Furthermore, sFlt-1 over expression increased fetal resorption rate in the PlGF−/− mice and promoted abnormal placental vascularisation. To determine whether placental PlGF is critical for preventing fetal growth restriction associated with preeclampsia, we generated haploinsufficient PlGF+/− placentas and embryos in dams and exposed to high sFlt-1 environment. These mothers showed reduced fetal resorption, gestational hypertension and proteinuria when compared to pregnant PlGF−/− mice. Furthermore, treatment with hydrogen sulphide-releasing agent, GYY4137, significantly reduced resorption, hypertension and proteinuria observed in Ad-sFlt-1 treated pregnant PlGF−/− mice. Our study shows that placental PlGF is a critical protective factor against the damaging effects of high sFlt-1 associated with preeclampsia and activation of the hydrogen sulphide pathway may rescue preeclampsia phenotypes even under low PlGF environment.

AB - Placenta growth factor (PlGF) deficient mice are fertile at a Mendelian ratio. Interestingly, low maternal plasma levels of PlGF are strongly associated with early onset of preeclampsia, a pregnancy hypertensive disorder characterised by high blood pressure, proteinuria and fetal growth restriction. PlGF is increasingly being recognised as an early diagnostic biomarker, but the physiological importance of PlGF in the pathogenesis of preeclampsia is unknown. We investigated whether the decreased levels of PlGF in pregnancy exacerbate the fetal growth restriction associated with preeclampsia in the presence of high sFlt-1 and the potential of hydrogen sulphide to ameliorate these effects. Pregnant PlGF−/− mice were injected with adenovirus encoding sFlt-1 (Ad-sFlt-1) at 1 × 109 pfu/ml at E10.5 and mean arterial blood pressure (MAP), biochemical and histological analysis of maternal kidney, placenta and embryos were assessed at the end of pregnancy. Ad-sFlt-1 significantly increased MAP and induced severe glomerular endotheliosis in PlGF−/− mice compared to wild-type animals. Soluble Flt-1 also significantly elevated albumin–creatinine ratio and increased levels of urinary kidney injury molecule-1, a marker for proximal tubule injury. Furthermore, sFlt-1 over expression increased fetal resorption rate in the PlGF−/− mice and promoted abnormal placental vascularisation. To determine whether placental PlGF is critical for preventing fetal growth restriction associated with preeclampsia, we generated haploinsufficient PlGF+/− placentas and embryos in dams and exposed to high sFlt-1 environment. These mothers showed reduced fetal resorption, gestational hypertension and proteinuria when compared to pregnant PlGF−/− mice. Furthermore, treatment with hydrogen sulphide-releasing agent, GYY4137, significantly reduced resorption, hypertension and proteinuria observed in Ad-sFlt-1 treated pregnant PlGF−/− mice. Our study shows that placental PlGF is a critical protective factor against the damaging effects of high sFlt-1 associated with preeclampsia and activation of the hydrogen sulphide pathway may rescue preeclampsia phenotypes even under low PlGF environment.

U2 - 10.1016/j.niox.2015.02.066

DO - 10.1016/j.niox.2015.02.066

M3 - Meeting abstract

VL - 47

SP - S27-S28

JO - Nitric Oxide

T2 - Nitric Oxide

JF - Nitric Oxide

SN - 1089-8603

IS - Suppl.1

M1 - PP36

ER -