Imitation of optical coherence tomography images by wave Monte Carlo-based approach implemented with the Leontovich–Fock equation

Andrey D. Bulygin, Denis A. Vrazhnov, Elena S. Sim, Igor Meglinski, Yury V. Kistenev

Research output: Contribution to journalArticlepeer-review

Abstract

We present a computational modeling approach for imitation of the time-domain optical coherence tomography (OCT) images of biotissues. The developed modeling technique is based on the implementation of the Leontovich–Fock equation into the wave Monte Carlo (MC) method. We discuss the benefits of the developed computational model in comparison to the conventional MC method based on the modeling of OCT images of a nevus. The developed model takes into account diffraction on bulk-absorbing microstructures and allows consideration of the influence of the amplitude–phase profile of the wave beam on the quality of the OCT images. The selection of optical parameters of modeling medium, used for simulation of optical radiation propagation in biotissues, is based on the results obtained experimentally by OCT. The developed computational model can be used for imitation of the light waves propagation both in time-domain and spectral-domain OCT approaches.
Original languageEnglish
Article number061626
Number of pages13
JournalOptical Engineering
Volume59
Issue number6
DOIs
Publication statusPublished - 28 Feb 2020

Bibliographical note

Copyright 2020 SPIE. One print or electronic copy may be made for personal use only. Systematic reproduction, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.

Keywords

  • Leontovich-Fock equation
  • Monte Carlo method
  • biological tissue
  • imaging
  • optical coherence tomography

Fingerprint

Dive into the research topics of 'Imitation of optical coherence tomography images by wave Monte Carlo-based approach implemented with the Leontovich–Fock equation'. Together they form a unique fingerprint.

Cite this