In-line and cascaded DWDM transmission using a 15dB net-gain polarization-insensitive fiber optical parametric amplifier

Research output: Contribution to journalArticle

Abstract

We demonstrate and characterize polarization-division multiplexed (PDM) DWDM data transmission for the first time in a range of systems incorporating a net-gain polarization-insensitive fiber optical parametric amplifier (PI-FOPA) for loss compensation. The PI-FOPA comprises a modified diversity-loop architecture to achieve 15dB net-gain, and up to 2.3THz (~18nm) bandwidth. Three representative systems are characterized using a 100Gb/s PDM-QPSK signal in conjunction with emulated DWDM neighbouring channels: (a) a 4x75km in-line fiber transmission system incorporating multiple EDFAs and a single PI-FOPA (b) N cascaded PI-FOPA amplification stages in an unlevelled Nx25km recirculating loop arrangement, with no EDFAs used within the loop signal path, and (c) M cascaded PI-FOPA amplification stages as part of an Mx75.6km gain-flattened recirculating loop system with the FOPA compensating for the transmission fiber loss, and EDFA compensation for loop switching and levelling loss. For the 4x75km in-line system (a), we transmit 45x50GHz-spaced signals (‘equivalent’ data-rate of 4.5Tb/s) with average OSNR penalty of 1.3dB over the band at 10−3 BER. For the unlevelled ‘FOPA-only’ 25.2km cascaded system (b), we report a maximum of eight recirculations for all 10x100GHz-spaced signals, and five recirculations for 20x50GHz-spaced signals. For the 75.6km levelled system (c), we achieve eight recirculations for all 20x50GHz signals resulting in a total transmission distance of 604.8km.
Original languageEnglish
Pages (from-to)24312-24325
JournalOptics Express
Volume25
Issue number20
DOIs
Publication statusPublished - 25 Sep 2017

Bibliographical note

© 2017 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited.

Funding: UK Engineering and Physical Sciences Research Council (EPSRC) grants EP/M005283/1 (UPON) and EP/J017582/1 (UNLOC); II-VI for CASE studentship of V. Gordienko.

Keywords

  • Fiber optics amplifiers and oscillators
  • Fiber optics communications
  • Nonlinear optics
  • parametric processes

Fingerprint Dive into the research topics of 'In-line and cascaded DWDM transmission using a 15dB net-gain polarization-insensitive fiber optical parametric amplifier'. Together they form a unique fingerprint.

  • Cite this