TY - JOUR
T1 - Indicators for Assessing Habitat Values and Pressures for Protected Areas—An Integrated Habitat and Land Cover Change Approach for the Udzungwa Mountains National Park in Tanzania
AU - Brink, Andreas
AU - Martínez-López, Javier
AU - Szantoi, Zoltan
AU - Moreno-Atencia, Pablo
AU - Lupi, Andrea
AU - Bastin, Lucy
AU - Dubois, Grégoire
N1 - This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
PY - 2016/10/19
Y1 - 2016/10/19
N2 - Assessing the status and monitoring the trends of land cover dynamics in and around protected areas is of utmost importance for park managers and decision makers. Moreover, to support the Convention on Biological Diversity (CBD)’s Strategic Action Plan including the Aichi Biodiversity Targets, such efforts are necessary to set a framework to reach the agreed national, regional or global targets. The integration of land use/cover change (LULCC) data with information on habitats and population density provides the means to assess potential degradation and disturbance resulting from anthropogenic activities such as agriculture and urban area expansion. This study assesses the LULCC over a 20 year (1990–2000–2010) period using freely available Landsat imagery and a dedicated method and toolbox for the Udzungwa Mountains National Park (UMNP) and its surroundings (20 km buffer) in Tanzania. Habitat data gathered from the Digital Observatory for Protected Areas (DOPA)’s eHabitat+ Web service were used to perform ecological stratification of the study area and to develop similarity maps of the potential presence of comparable habitat types outside the protected area. Finally, integration of the habitat similarity maps with the LULCC data was applied in order to evaluate potential pressures on the different habitats within the national park and on the linking corridors between UMNP and other protected areas in the context of wildlife movement and migration. The results show that the UMNP has not suffered from relevant human activities during the study period. The natural vegetation area has remained stable around 1780 km2. In the surrounding 20 km buffer area and the connecting corridors, however, the anthropogenic impact has been strong. Artificially built up areas increased by 14.24% over the last 20 years and the agriculture area increased from 11% in 1990 to 30% in the year 2010. The habitat functional types and the similarity maps confirmed the importance of the buffer zone and the connecting corridors for wildlife movements, while the similarity maps detected other potential corridors for wildlife.
AB - Assessing the status and monitoring the trends of land cover dynamics in and around protected areas is of utmost importance for park managers and decision makers. Moreover, to support the Convention on Biological Diversity (CBD)’s Strategic Action Plan including the Aichi Biodiversity Targets, such efforts are necessary to set a framework to reach the agreed national, regional or global targets. The integration of land use/cover change (LULCC) data with information on habitats and population density provides the means to assess potential degradation and disturbance resulting from anthropogenic activities such as agriculture and urban area expansion. This study assesses the LULCC over a 20 year (1990–2000–2010) period using freely available Landsat imagery and a dedicated method and toolbox for the Udzungwa Mountains National Park (UMNP) and its surroundings (20 km buffer) in Tanzania. Habitat data gathered from the Digital Observatory for Protected Areas (DOPA)’s eHabitat+ Web service were used to perform ecological stratification of the study area and to develop similarity maps of the potential presence of comparable habitat types outside the protected area. Finally, integration of the habitat similarity maps with the LULCC data was applied in order to evaluate potential pressures on the different habitats within the national park and on the linking corridors between UMNP and other protected areas in the context of wildlife movement and migration. The results show that the UMNP has not suffered from relevant human activities during the study period. The natural vegetation area has remained stable around 1780 km2. In the surrounding 20 km buffer area and the connecting corridors, however, the anthropogenic impact has been strong. Artificially built up areas increased by 14.24% over the last 20 years and the agriculture area increased from 11% in 1990 to 30% in the year 2010. The habitat functional types and the similarity maps confirmed the importance of the buffer zone and the connecting corridors for wildlife movements, while the similarity maps detected other potential corridors for wildlife.
UR - https://www.mdpi.com/2072-4292/8/10/862
U2 - 10.3390/rs8100862
DO - 10.3390/rs8100862
M3 - Article
SN - 2072-4292
VL - 8
JO - Remote Sensing
JF - Remote Sensing
IS - 10
M1 - 862
ER -