Integrating in silico and in vitro analysis of peptide binding affinity to HLA-Cw*0102: a bioinformatic approach to the prediction of new epitopes

Valerie A. Walshe, Channa K. Hattotuwagama, Irini A. Doytchinova, MaiLee Wong, Isabel K. Macdonald, Arend Mulder, Frans H.J. Claas, Pierre Pellegrino, Jo Turner, Ian Williams, Emma L. Turnbull, Persephone Borrow, Darren R Flower

Research output: Contribution to journalArticle

Abstract

Predictive models of peptide-Major Histocompatibility Complex (MHC) binding affinity are important components of modern computational immunovaccinology. Here, we describe the development and deployment of a reliable peptide-binding prediction method for a previously poorly-characterized human MHC class I allele, HLA-Cw*0102.
Original languageEnglish
Article numbere8095
Number of pages11
JournalPLoS ONE
Volume4
Issue number11
DOIs
Publication statusPublished - 2009

Fingerprint

major histocompatibility complex
Bioinformatics
Computational Biology
Major Histocompatibility Complex
bioinformatics
Computer Simulation
epitopes
Epitopes
peptides
Peptides
prediction
Alleles
alleles
In Vitro Techniques
HLA-C*01:02 antigen
methodology

Bibliographical note

© 2009 Walshe et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Keywords

  • alleles
  • amino acid motifs
  • computational biology
  • edetic acid
  • epitopes
  • HIV-1
  • HLA-C antigens
  • histocompatibility antigens class I
  • humans
  • mononuclear leukocytes
  • major histocompatibility complex
  • statistical models
  • peptides
  • protein binding
  • tertiary protein structure

Cite this

Walshe, V. A., Hattotuwagama, C. K., Doytchinova, I. A., Wong, M., Macdonald, I. K., Mulder, A., ... Flower, D. R. (2009). Integrating in silico and in vitro analysis of peptide binding affinity to HLA-Cw*0102: a bioinformatic approach to the prediction of new epitopes. PLoS ONE, 4(11), [e8095]. https://doi.org/10.1371/journal.pone.0008095
Walshe, Valerie A. ; Hattotuwagama, Channa K. ; Doytchinova, Irini A. ; Wong, MaiLee ; Macdonald, Isabel K. ; Mulder, Arend ; Claas, Frans H.J. ; Pellegrino, Pierre ; Turner, Jo ; Williams, Ian ; Turnbull, Emma L. ; Borrow, Persephone ; Flower, Darren R. / Integrating in silico and in vitro analysis of peptide binding affinity to HLA-Cw*0102 : a bioinformatic approach to the prediction of new epitopes. In: PLoS ONE. 2009 ; Vol. 4, No. 11.
@article{bdc28d25c25a43f5ba29ccee29ff4e2e,
title = "Integrating in silico and in vitro analysis of peptide binding affinity to HLA-Cw*0102: a bioinformatic approach to the prediction of new epitopes",
abstract = "Predictive models of peptide-Major Histocompatibility Complex (MHC) binding affinity are important components of modern computational immunovaccinology. Here, we describe the development and deployment of a reliable peptide-binding prediction method for a previously poorly-characterized human MHC class I allele, HLA-Cw*0102.",
keywords = "alleles, amino acid motifs, computational biology, edetic acid, epitopes, HIV-1, HLA-C antigens, histocompatibility antigens class I, humans, mononuclear leukocytes, major histocompatibility complex, statistical models, peptides, protein binding, tertiary protein structure",
author = "Walshe, {Valerie A.} and Hattotuwagama, {Channa K.} and Doytchinova, {Irini A.} and MaiLee Wong and Macdonald, {Isabel K.} and Arend Mulder and Claas, {Frans H.J.} and Pierre Pellegrino and Jo Turner and Ian Williams and Turnbull, {Emma L.} and Persephone Borrow and Flower, {Darren R}",
note = "{\circledC} 2009 Walshe et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.",
year = "2009",
doi = "10.1371/journal.pone.0008095",
language = "English",
volume = "4",
journal = "PLoS ONE",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "11",

}

Walshe, VA, Hattotuwagama, CK, Doytchinova, IA, Wong, M, Macdonald, IK, Mulder, A, Claas, FHJ, Pellegrino, P, Turner, J, Williams, I, Turnbull, EL, Borrow, P & Flower, DR 2009, 'Integrating in silico and in vitro analysis of peptide binding affinity to HLA-Cw*0102: a bioinformatic approach to the prediction of new epitopes', PLoS ONE, vol. 4, no. 11, e8095. https://doi.org/10.1371/journal.pone.0008095

Integrating in silico and in vitro analysis of peptide binding affinity to HLA-Cw*0102 : a bioinformatic approach to the prediction of new epitopes. / Walshe, Valerie A.; Hattotuwagama, Channa K.; Doytchinova, Irini A.; Wong, MaiLee; Macdonald, Isabel K.; Mulder, Arend; Claas, Frans H.J.; Pellegrino, Pierre; Turner, Jo; Williams, Ian; Turnbull, Emma L.; Borrow, Persephone; Flower, Darren R.

In: PLoS ONE, Vol. 4, No. 11, e8095, 2009.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Integrating in silico and in vitro analysis of peptide binding affinity to HLA-Cw*0102

T2 - a bioinformatic approach to the prediction of new epitopes

AU - Walshe, Valerie A.

AU - Hattotuwagama, Channa K.

AU - Doytchinova, Irini A.

AU - Wong, MaiLee

AU - Macdonald, Isabel K.

AU - Mulder, Arend

AU - Claas, Frans H.J.

AU - Pellegrino, Pierre

AU - Turner, Jo

AU - Williams, Ian

AU - Turnbull, Emma L.

AU - Borrow, Persephone

AU - Flower, Darren R

N1 - © 2009 Walshe et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

PY - 2009

Y1 - 2009

N2 - Predictive models of peptide-Major Histocompatibility Complex (MHC) binding affinity are important components of modern computational immunovaccinology. Here, we describe the development and deployment of a reliable peptide-binding prediction method for a previously poorly-characterized human MHC class I allele, HLA-Cw*0102.

AB - Predictive models of peptide-Major Histocompatibility Complex (MHC) binding affinity are important components of modern computational immunovaccinology. Here, we describe the development and deployment of a reliable peptide-binding prediction method for a previously poorly-characterized human MHC class I allele, HLA-Cw*0102.

KW - alleles

KW - amino acid motifs

KW - computational biology

KW - edetic acid

KW - epitopes

KW - HIV-1

KW - HLA-C antigens

KW - histocompatibility antigens class I

KW - humans

KW - mononuclear leukocytes

KW - major histocompatibility complex

KW - statistical models

KW - peptides

KW - protein binding

KW - tertiary protein structure

UR - http://www.scopus.com/inward/record.url?scp=77951247977&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0008095

DO - 10.1371/journal.pone.0008095

M3 - Article

C2 - 19956609

VL - 4

JO - PLoS ONE

JF - PLoS ONE

SN - 1932-6203

IS - 11

M1 - e8095

ER -