Interaction of Kelvin waves and nonlocality of energy transfer in superfluids

Jason Laurie, Victor S. L’vov, Sergey Nazarenko, Oleksii Rudenko

Research output: Contribution to journalArticlepeer-review


We argue that the physics of interacting Kelvin Waves (KWs) is highly nontrivial and cannot be understood on the basis of pure dimensional reasoning. A consistent theory of KW turbulence in superfluids should be based upon explicit knowledge of their interactions. To achieve this, we present a detailed calculation and comprehensive analysis of the interaction coefficients for KW turbuelence, thereby, resolving previous mistakes stemming from unaccounted contributions. As a first application of this analysis, we derive a local nonlinear (partial differential) equation. This equation is much simpler for analysis and numerical simulations of KWs than the Biot-Savart equation, and in contrast to the completely integrable local induction approximation (in which the energy exchange between KWs is absent), describes the nonlinear dynamics of KWs. Second, we show that the previously suggested Kozik-Svistunov energy spectrum for KWs, which has often been used in the analysis of experimental and numerical data in superfluid turbulence, is irrelevant, because it is based upon an erroneous assumption of the locality of the energy transfer through scales. Moreover, we demonstrate the weak nonlocality of the inverse cascade spectrum with a constant particle-number flux and find resulting logarithmic corrections to this spectrum.
Original languageEnglish
Article number104526
Number of pages14
JournalPhysical Review B
Issue number10
Publication statusPublished - 26 Mar 2010


Dive into the research topics of 'Interaction of Kelvin waves and nonlocality of energy transfer in superfluids'. Together they form a unique fingerprint.

Cite this