Abstract
Lasers can be identified by their relatively long coherence lengths using interferometry. A Mach-Zehnder interferometer incorporating liquid crystal polarization modulators is demonstrated as a means of low-cost, robust laser detection. Temporal modulations, as a signature of coherence, can be induced by modulating polarization changes in liquid crystal modulators using low voltages. Sensitivities of <10 nW can be achieved. The suitability as a means of laser detection is discussed.
Original language | English |
---|---|
Article number | 064106 |
Journal | Optical Engineering |
Volume | 59 |
Issue number | 6 |
DOIs | |
Publication status | Published - 8 Jun 2020 |
Bibliographical note
Copyright 2020 SPIE. One print or electronic copy may be made for personal use only. Systematic reproduction, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.Keywords
- interferometry
- laser detection
- liquid crystal