Linear stability of flow past two circular cylinders in a side-by-side arrangement

Takeshi Akinaga, Jiro Mizushima

Research output: Contribution to journalArticle

Abstract

The linear stability of flow past two circular cylinders in a side-by-side arrangement is investigated theoretically, numerically and experimentally under the assumption of a two-dimensional flow field, in order to explore the origin of in-phase and antiphase oscillatory flows. Steady symmetric flow is realized at a small Reynolds number, but becomes unstable above a critical Reynolds number though the solution corresponding to the flow still satisfies the basic equations irrespective of the magnitude of the Reynolds number. We obtained the solution numerically and investigated its linear stability. We found that there are two kinds of unstable modes, i.e., antisymmetric and symmetric modes, which lead to in-phase and antiphase oscillatory flows, respectively. We determined the critical Reynolds numbers for the two modes and evaluated the critical distance at which the most unstable disturbance changes from the antisymmetric to the symmetric mode, or vice versa.
Original languageEnglish
Pages (from-to)1366-1369
Number of pages4
JournalJournal of Physical Society of Japan
Volume74
Issue number5
DOIs
Publication statusPublished - May 2005

Fingerprint

circular cylinders
Reynolds number
two dimensional flow
steady flow
flow distribution
disturbances

Keywords

  • two cylinders
  • stability
  • side-by-side arrangement
  • Hopf bifurcation
  • flow visualization

Cite this

Akinaga, Takeshi ; Mizushima, Jiro. / Linear stability of flow past two circular cylinders in a side-by-side arrangement. In: Journal of Physical Society of Japan. 2005 ; Vol. 74, No. 5. pp. 1366-1369.
@article{bdbbecdf141345ce80f8a4c104035245,
title = "Linear stability of flow past two circular cylinders in a side-by-side arrangement",
abstract = "The linear stability of flow past two circular cylinders in a side-by-side arrangement is investigated theoretically, numerically and experimentally under the assumption of a two-dimensional flow field, in order to explore the origin of in-phase and antiphase oscillatory flows. Steady symmetric flow is realized at a small Reynolds number, but becomes unstable above a critical Reynolds number though the solution corresponding to the flow still satisfies the basic equations irrespective of the magnitude of the Reynolds number. We obtained the solution numerically and investigated its linear stability. We found that there are two kinds of unstable modes, i.e., antisymmetric and symmetric modes, which lead to in-phase and antiphase oscillatory flows, respectively. We determined the critical Reynolds numbers for the two modes and evaluated the critical distance at which the most unstable disturbance changes from the antisymmetric to the symmetric mode, or vice versa.",
keywords = "two cylinders, stability, side-by-side arrangement, Hopf bifurcation, flow visualization",
author = "Takeshi Akinaga and Jiro Mizushima",
year = "2005",
month = "5",
doi = "10.1143/JPSJ.74.1366",
language = "English",
volume = "74",
pages = "1366--1369",
journal = "Journal of Physical Society of Japan",
issn = "0031-9015",
publisher = "Physical Society of Japan",
number = "5",

}

Linear stability of flow past two circular cylinders in a side-by-side arrangement. / Akinaga, Takeshi; Mizushima, Jiro.

In: Journal of Physical Society of Japan, Vol. 74, No. 5, 05.2005, p. 1366-1369.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Linear stability of flow past two circular cylinders in a side-by-side arrangement

AU - Akinaga, Takeshi

AU - Mizushima, Jiro

PY - 2005/5

Y1 - 2005/5

N2 - The linear stability of flow past two circular cylinders in a side-by-side arrangement is investigated theoretically, numerically and experimentally under the assumption of a two-dimensional flow field, in order to explore the origin of in-phase and antiphase oscillatory flows. Steady symmetric flow is realized at a small Reynolds number, but becomes unstable above a critical Reynolds number though the solution corresponding to the flow still satisfies the basic equations irrespective of the magnitude of the Reynolds number. We obtained the solution numerically and investigated its linear stability. We found that there are two kinds of unstable modes, i.e., antisymmetric and symmetric modes, which lead to in-phase and antiphase oscillatory flows, respectively. We determined the critical Reynolds numbers for the two modes and evaluated the critical distance at which the most unstable disturbance changes from the antisymmetric to the symmetric mode, or vice versa.

AB - The linear stability of flow past two circular cylinders in a side-by-side arrangement is investigated theoretically, numerically and experimentally under the assumption of a two-dimensional flow field, in order to explore the origin of in-phase and antiphase oscillatory flows. Steady symmetric flow is realized at a small Reynolds number, but becomes unstable above a critical Reynolds number though the solution corresponding to the flow still satisfies the basic equations irrespective of the magnitude of the Reynolds number. We obtained the solution numerically and investigated its linear stability. We found that there are two kinds of unstable modes, i.e., antisymmetric and symmetric modes, which lead to in-phase and antiphase oscillatory flows, respectively. We determined the critical Reynolds numbers for the two modes and evaluated the critical distance at which the most unstable disturbance changes from the antisymmetric to the symmetric mode, or vice versa.

KW - two cylinders

KW - stability

KW - side-by-side arrangement

KW - Hopf bifurcation

KW - flow visualization

UR - http://www.scopus.com/inward/record.url?scp=20444386257&partnerID=8YFLogxK

UR - http://journals.jps.jp/doi/abs/10.1143/JPSJ.74.1366

U2 - 10.1143/JPSJ.74.1366

DO - 10.1143/JPSJ.74.1366

M3 - Article

AN - SCOPUS:20444386257

VL - 74

SP - 1366

EP - 1369

JO - Journal of Physical Society of Japan

JF - Journal of Physical Society of Japan

SN - 0031-9015

IS - 5

ER -