Lipid Composition Analysis Reveals Mechanisms of Ethanol Tolerance in the Model Yeast Saccharomyces cerevisiae

M Lairón-Peris, S J Routledge, J A Linney, J Alonso-Del-Real, C M Spickett, A R Pitt, J M Guillamon, E Barrio, A D Goddard, A Querol

Research output: Contribution to journalArticlepeer-review

Abstract

Saccharomyces cerevisiae is an important unicellular yeast species within the biotechnological and the food and beverage industries. A significant application of this species is the production of ethanol, where concentrations are limited by cellular toxicity, often at the level of the cell membrane. Here, we characterize 61 S. cerevisiae strains for ethanol tolerance and further analyze five representatives with various ethanol tolerances. The most tolerant strain, AJ4, was dominant in coculture at 0 and 10% ethanol. Unexpectedly, although it does not have the highest noninhibitory concentration or MIC, MY29 was the dominant strain in coculture at 6% ethanol, which may be linked to differences in its basal lipidome. Although relatively few lipidomic differences were observed between strains, a significantly higher phosphatidylethanolamine concentration was observed in the least tolerant strain, MY26, at 0 and 6% ethanol compared to the other strains that became more similar at 10%, indicating potential involvement of this lipid with ethanol sensitivity. Our findings reveal that AJ4 is best able to adapt its membrane to become more fluid in the presence of ethanol and that lipid extracts from AJ4 also form the most permeable membranes. Furthermore, MY26 is least able to modulate fluidity in response to ethanol, and membranes formed from extracted lipids are least leaky at physiological ethanol concentrations. Overall, these results reveal a potential mechanism of ethanol tolerance and suggest a limited set of membrane compositions that diverse yeast species use to achieve this. IMPORTANCE Many microbial processes are not implemented at the industrial level because the product yield is poorer and more expensive than can be achieved by chemical synthesis. It is well established that microbes show stress responses during bioprocessing, and one reason for poor product output from cell factories is production conditions that are ultimately toxic to the cells. During fermentative processes, yeast cells encounter culture media with a high sugar content, which is later transformed into high ethanol concentrations. Thus, ethanol toxicity is one of the major stresses in traditional and more recent biotechnological processes. We have performed a multilayer phenotypic and lipidomic characterization of a large number of industrial and environmental strains of Saccharomyces to identify key resistant and nonresistant isolates for future applications.

Original languageEnglish
Article numbere0044021
Number of pages22
JournalApplied and Environmental Microbiology
Volume87
Issue number12
Early online date26 Mar 2021
DOIs
Publication statusPublished - 26 May 2021

Bibliographical note

Funding: ML-P was supported by a FPU contract from Ministerio de Ciencia, Innovación y Universidades(ref. FPU15/01775). This work was supported by projects ERACoBioTech MeMBrane project
(UE)) to AQ and AG, PCI2018-093190 (AEI/FEDER, UE) to AQ and BBSRC (BB/R02152X/1) to AG

Copyright © 2021 Lairón-Peris et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Keywords

  • Saccharomyces cerevisiae
  • ethanol
  • membrane properties

Fingerprint

Dive into the research topics of 'Lipid Composition Analysis Reveals Mechanisms of Ethanol Tolerance in the Model Yeast Saccharomyces cerevisiae'. Together they form a unique fingerprint.

Cite this