Localization of cortico-peripheral coherence with electroencephalography.

AG Guggisberg, SS Dalal, JM Zumer, DD Wong, S Dubovik, CM Michel, A Schnider

Research output: Contribution to journalArticlepeer-review

Abstract

Background
The analysis of coherent networks from continuous recordings of neural activity with functional MRI or magnetoencephalography has provided important new insights into brain physiology and pathology. Here we assess whether valid localizations of coherent cortical networks can also be obtained from high-resolution electroencephalography (EEG) recordings.

Methods
EEG was recorded from healthy subjects and from patients with ischemic brain lesions during a tonic hand muscle contraction task and during continuous visual stimulation with an alternating checkerboard. These tasks induce oscillations in the primary hand motor area or in the primary visual cortex, respectively, which are coherent with extracerebral signals (hand muscle electromyogram or visual stimulation frequency). Cortical oscillations were reconstructed with different inverse solutions and the coherence between oscillations at each cortical voxel and the extracerebral signals was calculated. Moreover, simulations of coherent point sources were performed.

Results
Cortico-muscular coherence was correctly localized to the primary hand motor area and the steady-state visual evoked potentials to the primary visual cortex in all subjects and patients. Sophisticated head models tended to yield better localization accuracy than a single sphere model. A Minimum Variance Beamformer (MVBF) provided more accurate and focal localizations of simulated point sources than an L2 Minimum Norm (MN) inverse solution. In the real datasets, the MN maps had less localization error but were less focal than MVBF maps.

Conclusions
EEG can localize coherent cortical networks with sufficient accuracy.
Original languageEnglish
Pages (from-to)1348-1357
JournalNeuroImage
Volume57
Issue number4
DOIs
Publication statusPublished - 15 Aug 2011

Bibliographical note

© 2011, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

Fingerprint

Dive into the research topics of 'Localization of cortico-peripheral coherence with electroencephalography.'. Together they form a unique fingerprint.

Cite this