Abstract
A resonant vibration energy harvester typically comprises of a clamped anchor and a vibrating shuttle with a proof mass. Piezoelectric materials are embedded in locations of high strain in order to transduce mechanical deformation into electric charge. Conventional design for piezoelectric vibration energy harvesters (PVEH) usually utilizes piezoelectric material and metal electrode layers covering the entire surface area of the cantilever with no consideration provided to examining the trade-off involved with respect to maximizing output power. This paper reports on the theory and experimental verification underpinning optimization of the active electrode area of a cantilevered PVEH in order to maximize output power. The analytical formulation utilizes Euler-Bernoulli beam theory to model the mechanical response of the cantilever. The expression for output power is reduced to a fifth order polynomial expression as a function of the electrode area. The maximum output power corresponds to the case when 44% area of the cantilever is covered by electrode metal. Experimental results are also provided to verify the theory.
Original language | English |
---|---|
Article number | 012114 |
Journal | Journal of Physics: Conference Series |
Volume | 660 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Dec 2015 |