Micro-structured alumina hollow fibre membranes - Potential applications in wastewater treatment

Melanie Lee, Zhentao Wu, Rong Wang, K. Li*

*Corresponding author for this work

Research output: Contribution to journalArticle

Abstract

In this study, three types of micro-structured alumina hollow fibre membranes, i.e. Membranes I, II, and III, have been developed and characterised for potential use in wastewater treatments. They consist of two basic structures: finger-like micro-channels for reduced transmembrane resistance, and sponge-like layer(s) for micro-filtration (MF). They have been fabricated via a combined phase-inversion and sintering technique, whereby the viscous fingering phenomenon that takes place concurrent to phase inversion leads to the formation of a plurality of finger-like voids or micro-channels within the membranes. The three internal coagulants used were hexane, DMSO and tap water with air gaps of 0 or 30cm. Mechanical strength and water permeation flux were found to be sensitive to changes in membrane morphology, while pore size distribution of the separation layer(s) were less affected and were all in the microfiltration range. Membrane II, with just one very thin separation layer, exhibited the highest water permeation flux of 1874L/(m2h) at 0.1MPa. Effects of sintering temperature on pore size distribution, mechanical property and water permeation of the three membranes, in particular Membrane II, were systematically investigated. Sintering temperatures between 1300°C and 1350°C are suggested for Membrane II, taking into consideration of the reduced water permeation at higher sintering temperatures and the lowered mechanical strength at lower sintering temperatures.

Original languageEnglish
Pages (from-to)39-48
Number of pages10
JournalJournal of Membrane Science
Volume461
DOIs
Publication statusPublished - 1 Jul 2014

Keywords

  • Alumina hollow fibre membranes
  • Asymmetric structure
  • Finger-like micro-channels
  • Wastewater treatment

Fingerprint Dive into the research topics of 'Micro-structured alumina hollow fibre membranes - Potential applications in wastewater treatment'. Together they form a unique fingerprint.

Cite this