MILVA

An interactive tool for the exploration of multidimensional microarray data

Davide D'Alimonte, David Lowe, Ian T Nabney, Vassilis Mersinias, Colin P Smith

Research output: Contribution to journalArticle

Abstract

Clustering techniques such as k-means and hierarchical clustering are commonly used to analyze DNA microarray derived gene expression data. However, the interactions between processes underlying the cell activity suggest that the complexity of the microarray data structure may not be fully represented with discrete clustering methods.
Original languageEnglish
Pages (from-to)4192-4193
Number of pages2
JournalBioinformatics
Volume21
Issue number22
Early online date13 Sep 2005
DOIs
Publication statusPublished - 2005

Fingerprint

DNA Microarray
Multidimensional Data
K-means Clustering
Hierarchical Clustering
Microarrays
Gene Expression Data
Microarray Data
Clustering Methods
Cluster Analysis
Data Structures
Clustering
Cell
Interaction
Gene expression
Data structures
DNA
Oligonucleotide Array Sequence Analysis
Gene Expression

Keywords

  • cluster analysis
  • computational biology
  • computer graphics
  • statistical data interpretation
  • gene expression regulation
  • Internet
  • oligonucleotide array sequence analysis
  • automated pattern recognition
  • probability
  • programming languages
  • sensitivity and specificity
  • sequence alignment
  • DNA sequence analysis
  • software
  • user-computer interface

Cite this

D'Alimonte, D., Lowe, D., Nabney, I. T., Mersinias, V., & Smith, C. P. (2005). MILVA: An interactive tool for the exploration of multidimensional microarray data. Bioinformatics, 21(22), 4192-4193. https://doi.org/10.1093/bioinformatics/bti676
D'Alimonte, Davide ; Lowe, David ; Nabney, Ian T ; Mersinias, Vassilis ; Smith, Colin P. / MILVA : An interactive tool for the exploration of multidimensional microarray data. In: Bioinformatics. 2005 ; Vol. 21, No. 22. pp. 4192-4193.
@article{9826039bb2cf4fd8aa8e96a8d00f5ea5,
title = "MILVA: An interactive tool for the exploration of multidimensional microarray data",
abstract = "Clustering techniques such as k-means and hierarchical clustering are commonly used to analyze DNA microarray derived gene expression data. However, the interactions between processes underlying the cell activity suggest that the complexity of the microarray data structure may not be fully represented with discrete clustering methods.",
keywords = "cluster analysis, computational biology, computer graphics, statistical data interpretation, gene expression regulation, Internet, oligonucleotide array sequence analysis, automated pattern recognition, probability, programming languages, sensitivity and specificity, sequence alignment, DNA sequence analysis, software, user-computer interface",
author = "Davide D'Alimonte and David Lowe and Nabney, {Ian T} and Vassilis Mersinias and Smith, {Colin P}",
year = "2005",
doi = "10.1093/bioinformatics/bti676",
language = "English",
volume = "21",
pages = "4192--4193",
journal = "Bioinformatics",
issn = "1367-4803",
publisher = "Oxford University Press",
number = "22",

}

D'Alimonte, D, Lowe, D, Nabney, IT, Mersinias, V & Smith, CP 2005, 'MILVA: An interactive tool for the exploration of multidimensional microarray data', Bioinformatics, vol. 21, no. 22, pp. 4192-4193. https://doi.org/10.1093/bioinformatics/bti676

MILVA : An interactive tool for the exploration of multidimensional microarray data. / D'Alimonte, Davide; Lowe, David; Nabney, Ian T; Mersinias, Vassilis; Smith, Colin P.

In: Bioinformatics, Vol. 21, No. 22, 2005, p. 4192-4193.

Research output: Contribution to journalArticle

TY - JOUR

T1 - MILVA

T2 - An interactive tool for the exploration of multidimensional microarray data

AU - D'Alimonte, Davide

AU - Lowe, David

AU - Nabney, Ian T

AU - Mersinias, Vassilis

AU - Smith, Colin P

PY - 2005

Y1 - 2005

N2 - Clustering techniques such as k-means and hierarchical clustering are commonly used to analyze DNA microarray derived gene expression data. However, the interactions between processes underlying the cell activity suggest that the complexity of the microarray data structure may not be fully represented with discrete clustering methods.

AB - Clustering techniques such as k-means and hierarchical clustering are commonly used to analyze DNA microarray derived gene expression data. However, the interactions between processes underlying the cell activity suggest that the complexity of the microarray data structure may not be fully represented with discrete clustering methods.

KW - cluster analysis

KW - computational biology

KW - computer graphics

KW - statistical data interpretation

KW - gene expression regulation

KW - Internet

KW - oligonucleotide array sequence analysis

KW - automated pattern recognition

KW - probability

KW - programming languages

KW - sensitivity and specificity

KW - sequence alignment

KW - DNA sequence analysis

KW - software

KW - user-computer interface

UR - http://www.scopus.com/inward/record.url?scp=27944437910&partnerID=8YFLogxK

UR - http://bioinformatics.oxfordjournals.org/content/21/22/4192

U2 - 10.1093/bioinformatics/bti676

DO - 10.1093/bioinformatics/bti676

M3 - Article

VL - 21

SP - 4192

EP - 4193

JO - Bioinformatics

JF - Bioinformatics

SN - 1367-4803

IS - 22

ER -