Modelling and experimental verification of a solar-powered liquid desiccant cooling system for greenhouse food production in hot climates

George Lychnos, Philip A. Davies

Research output: Contribution to journalArticle

Abstract

Experiments and theoretical modelling have been carried out to predict the performance of a solar-powered liquid desiccant cooling system for greenhouses. We have tested two components of the system in the laboratory using MgCl2 desiccant: (i) a regenerator which was tested under a solar simulator and (ii) a desiccator which was installed in a test duct. Theoretical models have been developed for both regenerator and desiccator and gave good agreement with the experiments. The verified computer model is used to predict the performance of the whole system during the hot summer months in Mumbai, Chittagong, Muscat, Messina and Havana. Taking examples of temperate, sub-tropical, tropical and heat-tolerant tropical crops (lettuce, soya bean, tomato and cucumber respectively) we estimate the extensions in growing seasons enabled by the system. Compared to conventional evaporative cooling, the desiccant system lowers average daily maximum temperatures in the hot season by 5.5-7.5 °C, sufficient to maintain viable growing conditions for lettuce throughout the year. In the case of tomato, cucumber and soya bean the system enables optimal cultivation through most summer months. It is concluded that the concept is technically viable and deserves testing by means of a pilot installation at an appropriate location.

Original languageEnglish
Pages (from-to)116-130
Number of pages15
JournalEnergy
Volume40
Issue number1
DOIs
Publication statusPublished - Apr 2012

Bibliographical note

NOTICE: this is the author’s version of a work that was accepted for publication in Energy. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Lychnos, G & Davies, PA, 'Modelling and experimental verification of a solar-powered liquid desiccant cooling system for greenhouse food production in hot climates' Energy, vol. 40, no. 1 (2012) DOI http://dx.doi.org/10.1016/j.energy.2012.02.021

Keywords

  • liquid desiccant cooling
  • food security
  • climate change
  • greenhouse
  • solar energy

Fingerprint Dive into the research topics of 'Modelling and experimental verification of a solar-powered liquid desiccant cooling system for greenhouse food production in hot climates'. Together they form a unique fingerprint.

  • Cite this