TY - JOUR
T1 - Multi-Modal LLMs in Agriculture: A Comprehensive Review
AU - Sapkota, Ranjan
AU - Qureshi, Rizwan
AU - Hadi, Muhammad Usman
AU - Hassan, Syed Zohaib
AU - Sadak, Ferhat
AU - Shoman, Maged
AU - Sajjad, Muhammad
AU - Dharejo, Fayaz Ali
AU - Paudel, Achyut
AU - Li, Jiajia
AU - Meng, Zhichao
AU - Shutske, John
AU - Karkee, Manoj
PY - 2025/9/19
Y1 - 2025/9/19
N2 - Given the rapid emergence and applications of Multi-Modal Large Language Models (MM-LLMs) across various scientific fields, insights regarding their applicability in agriculture are still only partially explored. This paper conducts an in-depth review of MM-LLMs in agriculture, focusing on understanding how MM-LLMs can be developed and implemented to optimize agricultural processes, increase efficiency, and reduce costs. Recent studies have explored the capabilities of MM-LLMs in agricultural information processing and decision-making. Despite these advancements, significant gaps persist, particularly in addressing domain-specific challenges such as variable data quality and availability, integration with existing agricultural systems, and the creation of robust training datasets that accurately represent complex agricultural environments. Moreover, a comprehensive understanding of the capabilities, challenges, and limitations of MM-LLMs in agricultural information processing and application is still missing. Exploring these areas is crucial to providing the community with a broader perspective and a clearer understanding of MM-LLMs’ applications, establishing a benchmark for the current state and emerging trends in this field. To bridge this gap, this survey reviews the progress of MM-LLMs and their utilization in agriculture, with an additional focus on 11 key research questions (RQs), where 4 RQs are general and 7 RQs are agriculture focused. By addressing these RQs, this review outlines the current opportunities and challenges, limitations, and future roadmap for MM-LLMs in agriculture. The findings indicate that multi-modal MM-LLMs not only simplify complex agricultural challenges but also significantly enhance decision-making and improve the efficiency of agricultural image processing. These advancements position MM-LLMs as an essential tool for the future of farming. For continued research and understanding, an organized and regularly updated list of papers on MM-LLMs is available at https://github.com/JiajiaLi04/Multi-Modal-LLMs-in-Agriculture Note to Practitioners—Motivated by the need to optimize agricultural practices, this paper investigates the use of Large Language Models (MM-LLMs) to improve efficiency and decision-making in agriculture. We delve into critical RQs to reveal the capabilities and challenges of MM-LLMs, and their potential applications in the agricultural sector. Looking ahead, our findings suggest a promising future for the integration of MM-LLMs in agriculture, potentially revolutionizing how we manage and operate farms.
AB - Given the rapid emergence and applications of Multi-Modal Large Language Models (MM-LLMs) across various scientific fields, insights regarding their applicability in agriculture are still only partially explored. This paper conducts an in-depth review of MM-LLMs in agriculture, focusing on understanding how MM-LLMs can be developed and implemented to optimize agricultural processes, increase efficiency, and reduce costs. Recent studies have explored the capabilities of MM-LLMs in agricultural information processing and decision-making. Despite these advancements, significant gaps persist, particularly in addressing domain-specific challenges such as variable data quality and availability, integration with existing agricultural systems, and the creation of robust training datasets that accurately represent complex agricultural environments. Moreover, a comprehensive understanding of the capabilities, challenges, and limitations of MM-LLMs in agricultural information processing and application is still missing. Exploring these areas is crucial to providing the community with a broader perspective and a clearer understanding of MM-LLMs’ applications, establishing a benchmark for the current state and emerging trends in this field. To bridge this gap, this survey reviews the progress of MM-LLMs and their utilization in agriculture, with an additional focus on 11 key research questions (RQs), where 4 RQs are general and 7 RQs are agriculture focused. By addressing these RQs, this review outlines the current opportunities and challenges, limitations, and future roadmap for MM-LLMs in agriculture. The findings indicate that multi-modal MM-LLMs not only simplify complex agricultural challenges but also significantly enhance decision-making and improve the efficiency of agricultural image processing. These advancements position MM-LLMs as an essential tool for the future of farming. For continued research and understanding, an organized and regularly updated list of papers on MM-LLMs is available at https://github.com/JiajiaLi04/Multi-Modal-LLMs-in-Agriculture Note to Practitioners—Motivated by the need to optimize agricultural practices, this paper investigates the use of Large Language Models (MM-LLMs) to improve efficiency and decision-making in agriculture. We delve into critical RQs to reveal the capabilities and challenges of MM-LLMs, and their potential applications in the agricultural sector. Looking ahead, our findings suggest a promising future for the integration of MM-LLMs in agriculture, potentially revolutionizing how we manage and operate farms.
UR - https://ieeexplore.ieee.org/document/11173627
U2 - 10.1109/TASE.2025.3612154
DO - 10.1109/TASE.2025.3612154
M3 - Article
SN - 1545-5955
VL - 22
JO - IEEE Transactions on Automation Science and Engineering
JF - IEEE Transactions on Automation Science and Engineering
ER -