Multiple switchable generation between noise-like pulse and dissipative soliton in an ER-doped fiber laser based on nonlinear polarization rotation

Xi Cheng, Qianqian Huang, Chuanhang Zou, Chengbo Mou, Baohua Qin, Zhijun Yan, Lin Zhang

Research output: Chapter in Book/Published conference outputConference publication

Abstract

In addition to some regular pulses such as conventional soliton (CS) and dissipative soliton (DS), passively mode-locked fiber lasers can also generate another type of distinctive pulse, i.e. the so-called noise-like pulse (NLP) [1]. Generally speaking, in NLP fiber lasers, NLP can be switched from CS or DS by increasing the pump power or adjusting the polarization controller (PC) [2]. However, as far as we know, multiple switchable generation between NLP and DS or CS have never been reported. We here show the multiple switchable phenomenon between NLP and DS from an Er-doped fiber laser (EDFL) based on nonlinear polarization rotation (NPR) for the first time. This kind of fiber laser not only facilitates the deep understanding of the properties and mechanisms of NLP but also paves a new way for the design of multi-functional light source.

Original languageEnglish
Title of host publication2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019
PublisherIEEE
ISBN (Electronic)9781728104690
DOIs
Publication statusPublished - 1 Oct 2019
Event2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019 - Munich, Germany
Duration: 23 Jun 201927 Jun 2019

Conference

Conference2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019
Country/TerritoryGermany
CityMunich
Period23/06/1927/06/19

Fingerprint

Dive into the research topics of 'Multiple switchable generation between noise-like pulse and dissipative soliton in an ER-doped fiber laser based on nonlinear polarization rotation'. Together they form a unique fingerprint.

Cite this