Neural network-based wind vector retrieval from satellite scatterometer data

Dan Cornford, Ian T. Nabney, Christopher M. Bishop

Research output: Contribution to journalArticlepeer-review


Obtaining wind vectors over the ocean is important for weather forecasting and ocean modelling. Several satellite systems used operationally by meteorological agencies utilise scatterometers to infer wind vectors over the oceans. In this paper we present the results of using novel neural network based techniques to estimate wind vectors from such data. The problem is partitioned into estimating wind speed and wind direction. Wind speed is modelled using a multi-layer perceptron (MLP) and a sum of squares error function. Wind direction is a periodic variable and a multi-valued function for a given set of inputs; a conventional MLP fails at this task, and so we model the full periodic probability density of direction conditioned on the satellite derived inputs using a Mixture Density Network (MDN) with periodic kernel functions. A committee of the resulting MDNs is shown to improve the results.
Original languageEnglish
Pages (from-to)206-217
Number of pages12
JournalNeural Computing and Applications
Issue number3
Publication statusPublished - Aug 1999


  • conditional probability density estimation
  • mixture density network
  • multi-layer perceptron
  • periodic variables
  • scatterometer
  • wind vectors


Dive into the research topics of 'Neural network-based wind vector retrieval from satellite scatterometer data'. Together they form a unique fingerprint.

Cite this