Nicotine exposure reduces cell viability but induces anti-inflammatory effects in human cystic fibrosis bronchial epithelial cells

R. Pallett, L.J. Leslie, L.J. Marshall

Research output: Contribution to conferencePoster

Abstract

Background: Mouse models of cystic fibrosis (CF) fail to truly represent the respiratory pathology. We have consequently developed human airways cell culture models to address this. The impact of cigarette smoke within the CF population is well documented, with exposure being known to worsen lung function. As nicotine is often perceived to be a less harmful component of tobacco smoke, this research aimed to identify its effects upon viability and inflammatory responses of CF (IB3-1) and CF phenotype corrected (C38) bronchial epithelial cells. Methods: IB3-1 and C38 cell lines were exposed to increasing concentrations of nicotine (0.55-75μM) for 24 hours. Cell viability was assessed via Cell Titre Blue and the inflammatory response with IL-6 and IL-8 ELISA. Results: CF cells were more sensitive; nicotine significantly (P<0.05) reduced cell viability at all concentrations tested, but failed to have a marked effect on C38 viability. Whilst nicotine induced anti-inflammatory effects in CF cells with a significant reduction in IL-6 and IL-8 release, it had no effect on chemokine release by C38 cells. Conclusion: CF cells may be more vulnerable to inhaled toxicants than non-CF cells. As mice lack a number of human nicotinic receptor subunits and fail to mimic the characteristic pathology of CF, these data emphasise the importance of employing relevant human cell lines to study a human-specific disease.
Original languageEnglish
Publication statusPublished - 27 Nov 2014
EventAnimal Replacement Science 2014 - Charles Darwin House, London, United Kingdom
Duration: 27 Nov 2014 → …

Conference

ConferenceAnimal Replacement Science 2014
CountryUnited Kingdom
CityLondon
Period27/11/14 → …
OtherImproving relevance to human disease – challenges, innovations and applications

Fingerprint Dive into the research topics of 'Nicotine exposure reduces cell viability but induces anti-inflammatory effects in human cystic fibrosis bronchial epithelial cells'. Together they form a unique fingerprint.

  • Research Output

    Using an in vitro human airway model to study the toxic effects of components of e-cigarettes

    Vasanthi Narayanan, P., Leslie, L. J. & Marshall, L. J., 27 Nov 2014.

    Research output: Contribution to conferencePoster

  • Cite this

    Pallett, R., Leslie, L. J., & Marshall, L. J. (2014). Nicotine exposure reduces cell viability but induces anti-inflammatory effects in human cystic fibrosis bronchial epithelial cells. Poster session presented at Animal Replacement Science 2014, London, United Kingdom.